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PREFACE

This paper constitutes a departure from the previous, formal and
analytical, treatments of the subject. It presents little that is novel;
it is written collequially; it is concerned just as much with mere verbal
qualitative discussions as with guantitative evaluations; it is frankly
concerned more with reader's attitude to the facts than with ths facts
themselves; and it makes no pretense of brevity. UNeveriheless, this
presentation has been found necessary. There are many concepts which ought
to be more widely understood if our thinking is not to be ossified, and if we
are to contimie -~ by working together = to push ocut the frontiers of ballistics.
In the present state of art not all of these concepts can be put in the -
precise language of mathematica; but to contimie ‘o0 ignore them would be a
poor substitute for precision., Verbal discussion and studied colloguialism
have a legitimate = if modest = place in ballisties., Certainly, facts are of
no use unless they are known to those whe have an opportunity to use them.
Brevity ig often overdons: a ballistician spends many of his evenings with
pencil and paper, trying to understand ths unstated implications of a brief =
and therefore allegedly easy - text.

The premise of this paper is that & visualization of a physical
phencunenon is useful: not so much because on occasions it might be all that
is necessary, as because on few occasions it might open a new vista. Of
course, visualization is part=and=parcel of any understanding; tut the reader
knows himself that it is all too often crowded out by algebra.

The paper is meant to supplement, rather than to supplant, the existing
texts on ths subject. Thus, the avoidance of the calculus is, of course,
merely a pose; but it is a pose which does no: harm, and which might=- on
occasions = be stimulating.




INTENTIONALLY LEFT BLANK.



BALLISTIC RESEABRCH LABORATORIES

REPCRT NO, 921

SJZaroodny/plg
Aberdeen Froving Gruuni, Md,

Aungust 1954

A SIMPLIFIED APFROACH TO THE YAWING MOTION OF A SPINNING SHELL

ABSTRACT

An ettempt is made to free the theory of yawing motion of & shell
from the excessive and frustrating reliance upon the assumptions of
linearity. A method of locking upon the yawing motion is suggested
whereby the pl:ws:.ca.l significance, or the mechanism, of the effect
produced by various forces and torques acting upon the shell can be
vividly visualizeéd, without resorting to the linearigation of the
problem (or to calculus).

The method consists essentially of considering the vector of
‘angular momentum L, and separating the dynamic concept (the motion of
L under the inﬂuence of applied tarque, here termed “quasi-precession®)
from the kinematic concept (the motion of the shell with respect to L,.
here termed “quasi-mitation").

The method is tested by an application to the solved, linear, case:
it is used tc derive = and to interpret = all conclusions of the linear

theory.

The principal value of the method is pedagogical. It shows a promise
in tackling certain more complicated problems of ballistics, such as
stability of liquid-filled shell.
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LIST OF SYMBOLS

Unit vector along shell axisj A = axisl moment of inerties

Moment of inertia about a transverse axls through the c.g. and
perpendicular to A.

Complex numbers such that Gp + Cn = 1.

Dismster of shell,

A function of quasi~mtation and yaw.
Magrus force,

Acceleration due to gravity.

Vector of the sum of &1l applied torques.
Danping torque,

Vector of angular momentum,

Mass of body . .

Overturning torque,

The normal force,

The c.g.

Quasi-mtation (the angle A"_iloI.),
Quasi-precession {the angle I.oTl).
Syngets force.

Linear Stability factor.

Unit vector along trajectory; T = magous torqgue’
Velocity of cege

An auxiliary angle as shown on sketches,
An anxiliary angle as showm on sketches.
The yaw.

. The quasi-precession.

Component of spin (@) perpendicular to longitudinal axis of body.
Coefficient associated with M, defined by M = psind or M = pub,
Yaw (viewed sc & complex rumber in the linear theory).

The rate of change of yaw.

Density of the air,

= |[/1-1/s
Quasi-mutation.
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Vector of angular veloclity of shell.

Spin

Angnlar velocity of quasi-mtation with respect to instantaneocus
position of angular momentum.

Axial torque

Lift

Spin in radians/caliber of travel.

Cross-Magmus torgue.

Cross=Magms force

B/n = Ky pdhu

/8 = Ky pdhllm

L/s =K pd2u2

Ky pd3/m
Inclination of tralectory
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INTRCDUCT ION

The theory of the yawing motion of a shell is an ancient and important
subject of ballistics: it lies at the root of well-nigh all problems of
ordnance that invelve the accuracy of fire. It seems that this theory
deserves being knmoum more widely, and used mere frequently, than is the
case now. Also, it deserves an occasional re-assessment.

Traditionally, the subject has been the damain = and perhaps, monopoly =
of what we shall call the mathematical approach. This situatien, apparently,
is the result of the elegance and power with which this approach solves the
basic problems of the stability of a shell. We now take it fer granted that
the first step in any investigation of the yawing motion must be an idealigaticn
of the problem; that the elementary physical facts must be condensed, in a
simplified form, into the mathsmatical notation; that the interplays of these
facts can be handled as mere algebraic substitutions, and the totality of
these facts must be expressed as a system of differemtizl equations, the
solution of which may be obtained Yy abstract mathematical methods, not
reQuiring an inltmate understanding of the physical significance of each
intermediate step; that the physical significance, if and when needed,will
re-cmerge in examining the mathematical solution; that the experimsntal
tests must be designed, and the experimental data examined, around this
abstract solution; and finally, that predictions may be made by these methods
that will possess considerable generality.

It ig of interest to observe that this tradition appears to be relatively
young; for it dsdiffioult to trace it far beyond the classical work of Fowler
in the First Waorld War. Raised in the belief in the power of mathematical
deduction, we might surmise, for instance, that the introduction of rifling
was & result of Enlert!s theory of spinning top; this indeed might have been
relevant as far as artillery is concerned., But the rifles of the American
Revaoluticn were made by the village blacksmith, innocent of ths theory, while
the most edvanced nation in Eurtpe was still massepreducing the smooth=bere
Erown Bess. The importance of the mathematical approach, clearly, rests not
upon tradition, ut on hopes that it will produce useful results socner than
a haphazard invention and empiricism can produce them. It is therefors not
inapprepriate that from the provingeground point of view (“the proof of the
pudding is in the eating") we inquire, occasicmally, whather the mathematical
approach itself = that is, the idea that it is possihle to & the rigor
of mathematics to & field of engineering (te wit, ballistics) - has 1ived
up to the expectations.

The fact is, the problem of the yawing metion of a shell has been sclved
(and indeed, vindicated); only for the highly simplified, linear case. Since
the underlying assumption usually is that the yaw is small,this is as though
the theory solves the problem only when the shell flles rather satisfactorily.

When some of the simplifying assumptions (such as the linearity of the
farce and torque system, smallness of the yaw, symmetry of the shell, stc.)
have to be rescinded; the camplexity of the problem grows rapidly., In fact,
most of the present wark in this field anticipates an extensive use of
modern highespeed camputing machines. In this connection it is partienlerly



annoying that with the recision of the linearity it is no langer

legitimate to utiligze that basic feature of the linear theory, the de-
composition of the yaw imto two normal modes, precession and mtation,.

The mmerical sclution of the equatioms of yawing motion becomes extpemsly
laborious, and yet much of the information expected from this solution

{6.g., the information that the shell is yawing approximately epicyioidally)
resembles very much ths information alieady available from the limear theory.
The practical result usually is that the available indications of non=lLinearity
are simply suppressed = rather than investigated. In other words (to mix

a metaphor), the elegance of the linear theory has exerted such infludnce

on the methods of ballisties that the presemt~day theory is chained to the
assumptions of linearity as to a point of diminishing returns. Thers exists
an acute need for a more pawerful method of tackling the problem of yawlng
motlion. ’

The method suggested bereby has no ¢laim of being a corplete answer
to this need; yet it might be a contributing facter. What it has to affer
is aimply an easier visualization of the problem; amd it is quite possible
that a future method will be dependent upon a visualization and a judgment..

_ In one problem, particnmlarly = that of liquid=-filled shell = the
traditional mathematical approach appeara to be simply stalemated. It has

not been possible to get even to first bage, i.e., to farmmlate total

differential equations of the motion; while a sclution of partial differential

equations of the motion of the liquid within the shell (with the objesct of

using the results in determining the motion of the shell) seems a long way g

off, It is in comnection with this problem that the method suggested in this

report arose, ' It started as an attempt to by=-pass the differenmtial equations

by means of visualizing the motion of the lignid within the yawing shell,

or aa an esthetic, cr qualitative "reasoning® (if such a term may be applied).

It was not easy, however, to meet the contemporary standards set by the

tradition of the mathematical approach; in fact, a rnumber of pitfalls of

this "qualitative reasoning have been found., For this reasem it appeared

best to expound thig method for the simple case of a rigid shell, and te

test it by applying it to ths solved linear case (where this mesthed can

be uwged to re-=derive and to inberpret all conclusions of the linsar theory);

postponing the possible applicatisn of this method to the cases of

non=linearity, agymmetry, and liguid filler, :

PHELIMINARIES

Cur method is non-mathematical only in this respect; we shall mot
require of the reader the formal knowledge of calculus and of differential
equations, Thig is rather a temuous simplification, s:l.g:o the differential
equations, of course, are the essence of the problem. the other hand,
we shall expect the reader to have a mastery of algebra, geometry, plane
(and possibly, spherical) trigonemetry; of the concepts of toraue and
angular velocity as vectors defined in the right-handed sense; of the
principal axes of inertia (i.e., the understanding that a rigid body may
8pin steadily onmly if it is dynamically balanced about the axis, and that
there are at least three such, mutually psrpendicular, axes in every rigid
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body)s of the moments of inertia; of the concept of the vector of angular
nomentun (which can be constructed by decomposing the instantaneous vector
of angular velocity along the three mutually perpendicular azes of inertiz
of the body, multiplying each component by the corresponding moment of
inertia, and recombining the products vectorially); of the fact that the
vector of applied torgue is the wvelocity of the tip of the vectar of angular
mamentum; of the resolution aof the motion of a rigid body inte the motion
of its center of gravity amd the rotation a.bmrb this center of gravity;

and of the use of complex nombers.

We shall consider only an axially=symmetric, spindle=like body with
maments of inertia A4 and B (A £ B, B the same about every transverse axis
h the center of gravity). For such a body the unit wactor along the
s ), the vector of angular velocity (o) and the vectar aof angular
momentum (L) are always co-planar (Figure 1). Fer, if the instamtaneous
motion of the body (with respectto its center of gravity) is & rotation
at an angular velocity o sbout an axis (w) that is different from 4, the

vector © car be resolved into the axial spin @y along _1;1 and the crosse=spin
?’1 perpendicular to AI; because of the symmetry, the directian'ﬂ of ¥] may be

taken as the sscond principal axis of inertia (theré being ne component of ®
along the third ax:l.s?r and L can be constructed from the component &:nl along

4, and By aleng 7 s i.e., in the plane of 5_1 ard @s In particular, since
B4, L is always further away from 5,1 than @ is, and there exists the relation

L, D " Sk, - A/ )

Note that Lhis relation allews & coincidenmce of the vecters @ and L
(which is to say, allews a steady unrestrained rotation of the body, or a
steady rotation with no torgue applied) only when the angle between A'.L and

o ig 0, n or n/2; in which cases the motion is either a pure spin (righ‘b-
Banded or left~handed} or a pure cartwheeling.

Generally however, the vector of angular velocity o is fixed meither
in space nor in the body. It is for this reason, perhms, that students
of ballistics have some slight difficuliiss in visualizing the three-
dimensional yawing motion of a rigid body.

The visualization is facllitated by the decomposition of the vector
@ jmto the components o, and 7] » The cross-spin 7) , of course, is simply

the velocity of the €ip of the unit vectoer _A;_l in the surface of the sphere

which is centered at the c.g. of the body, and moves with the body, but
does not rotate; this velocity, of course, is at right angles to the vector
?. In this way we replacq the visualization of the motion of the body
ratation about @) by a vigualization of the motion of a line A, with the

0 iy



- Fig.l: Angular Velocity & Angular Momentum



axial spin @y superposed if and when necessary. In other words, a three=-

degree=of-freedom situation is replaced by a two-dimensiomal situation
(in the surface of the unit sphere). The motion of the tip of the unit
vector é.l. in the surface of the unit sphere can be specified, of course,

as a rotation about the vector w.

Howwever, the vector @ is not a convenient point of reference. The
vector L is much more comvenient. We shall presently see ithat i} does
not move as fast as o and in particular, we know how it does move -~ viz,,
the velecity of its ¥ip is the vectar G of the applied torque, The motion
of the tip of 51 may be described as a rotatiocn about the instantanecus

position of L at an angular velocity

i 7
= = =], 2
LV m 3,171- /B, (2)
where L is the magnitude of L,
We can thus describe the motion of the body by two statements:

I, & rotates about ths instantanecus position of L &t an
anguler velocity {1, and
II. The velocity of the tip of L is G,

it being understood that G can be determined from the specification of
4 and L (and other relevant and available data), The statememt II, of

course, is simply the applicable law of physics; statement I comnscts the
easily visualizable (and measurable) vectar A, with the very relevant

physical quamtity, L. In most texts on ballistice the vectar of angular
momentum is mentioned briefly in the begimning of a derivation, and
thereafter is replaced by the appropriate combinations of its elements
(4, B, o, and 7) ). Our suggestion amounts to inviting the reader to

Wthink in terms of angular momentum®, i.e., to make a better - mare
frequent, and more intimate - use of this essentisl concept. The two
statements, together with a spacification of G correspond, of course,

to the differential equations of tke angular motion of the shell; they
are to be augmented by the statement that the acceleration of the center
of gravity is the applied feorce divided by the mass (with force properly
spacified{-.

~ VACUUM NUTATION

Ap important special case occurs when there are no .torques acting
upon the body {e.g., shell flies in vacuum). The the vecter L is .
corstant. A very simple descriptiom of the motion is ‘then pogsitle.

As the vectar A, on Figure 1 comes out of the plane of the paper (rotating

about @), the co-planarity of A> © and L mst be mreserved; hence the

13



vector @ comes out of the plane of the paper, too. Since the angls 510&
is not changing, by {1) ths angles 4,60 and @0L are mot changing either;
hence the whole triplet of vectors Al’ @ and L is rotating (as a rigid

Plans) about L. The motion of the body is a rolling of the circular cone
of half-angle A.lan on tha circular cone of half-angle cnOI..

It is not amiss at this point to make several trivial obsarvationms.

The motion is mot a simple rotatiom, it is rolling; yet it is a basis,
steady, type of motion, that may go on forever = if our assumptiona (so
far, only the rigidity and symmetry of the body and the absence of applied
torque) -hold; this is to say that the motion can bs predicted for any
length of time. If the agssumptlions are not quite exact, ths motiom still
can be predicted, with some accuracy, far some interval of time = the
more nearly true these assumptions, ths greater this interval. Ths angle

OL may have any value from O to n; it may also have an arbitrary initial
orientation (i.e., there are two scalars representing the arbitrary
constants of integration).

We shall call the angle A-_LOL “quasi-mtatien"

Since in this problem the onl;r direction fized in space 1s L, viz.,
we may visualize the shell's c. g. as stationary in space,it mighb be also
natural to call this angle = in this case - the yaw. Thns the quasi-
rutation could be defined as the yaw with respect to L; or, we might say
that in vagtum mutation the yaw with respect to Ll comisba of qua.si-
mtation.

OVERTURNING MCMENT

The torque (or moment) acting upon the shell in flight is specified,
conventionally, as the smm of lts components; these compoments, in turna,
being specified both in direction and magnitude, in certain convendent ways.
It is not quite a simple matter to ocutline, at the outset, which components
(or, as the parlance goes, which torgues) should be considered, the student
of ballistics would find it best to go by easy steps, digesting well the
basic concepts, and accepting or rejecting the more advanced concepts as
ths need for them, as well as the practicabmty of handling thenm, becomes
clsary,

Of these tarques the most important one, theoretically, is the one
whose. vector is perpendicular to the plane of yaw (i.e., whose couple
is in ths plane of yaw), and whose magnitude depernds essentially upon
the angle of yaw (angle from trajectary of center of gravity t axis of
shell). It is called uswally simply “moment¥, since historically it
was ths only moment at first considered; and, since it was first considered
in comnection with spin=stabilization of artillery shell, it iz reckoned,
conventionally, positive when overturning. Hence ths more exact name
(distinguishing it from other componenmts) is overturning torque. With
fin=gtabilized projectiles the righting torque is reckoned merely as a
negative overturning torque.

1h



In the linear theory the magnitude of this torgue (M) is assumed io
be proportional to the angle of yaw (6). The solution then is remarkably
elegant, In certain texts on ballistics M is assumed to be (for the
reasons of certain convenience in the preliminary mathematics) proportional
to siné (often a misleading assu.mptiongrcr tand (sometimes a better
approximation, though still limited to small angles of yaw); in practice,
both of these assumptions eventually revert to the assumption of linearity
in 8. The exact (and often not simple) function M(8) can be obtained
experimentally, say, by wind-tumnel tests. An exact mathematical solution
has been worked cut but is - in comparison with the linear theary = so
cumbersome as to be considered impractical. It is precisely this gap
between the linear 2nd non=linear theories which cur approach atiempts
to bridge (or more exactly, our approach attempts to ocutline a method
of btridging this gap). |

NUTATION AND PRECESSION

There are two special cases when the yawing motiom is particularly
simple - to wit, circular = even with a non<linear M(8). These cases
arise particularly naturally if we assume, for the time béing, that M
is very small, i.e., L moves only slowly; the motion is almost, but not
quite, the same as the mtation in vacuum.

Let T—l be 2 unit vector in the direction of the trajectery, i.e.,

in the direction of the velocity u of the center of gravity of the shell.

Consider first the case when T, is approginately in the same direction

as L, The situation may be such (Figures 2a and 2b) that the triplet of
vectors -A-l’ @ and L rotates, as a rigid plane, about I;. In particular,

if M is an overturning torque (Figure 22), L would be coming out of the
plane of the paper; the mction then may be steady if 21 is farther from

A, than L is. Or, if ¥ is a righting torque (Figure 2b), L would be

moving into the plane of the paper; but the motion still may be steady
if I, is closer to A, than L is. In either case the motion of the body

is a rolling of thé come 4;0n (same as befare), tut this time not on ths

cone of half-angle «OL (as was the case in vacuum) - rather, on the cone
of half-angle wll,. The angular velocity of the plane of yaw is slightly

lower than J) with spinestabilized shell (Figure 22), slightly higher than
[l with fin-stabilized shell (Figure 2b). ,
Such a motion is call mutation, In it the yaw (the angle Alo'rl) is
approxivately the same as quasi~nutation (angle 4,0L), but also has a
slight componernt 'I'IOL. We shall call the angle T101. "quagi=precession¥.

Note that with both spinestabilized and fin-stabilized shell the nutation
is in the same direction as the spin.

15



Notation: © denofes the tip of arrow coming out of the paper
® denotes the tail (feathers) of arrow going info Lhe paper

(a)

spin-stabilized shell fin-stabilized shell
(Tr between A, & L)

Fig.2: Nutation

(b)

spin-stabilized shell fin-stabilized shell
. (T, outside of angie AOL; /eft-randed yawing)

fig.3: Precession



Consider next the case when !1 is far away from the triplet of vectors

él’ @ and L. This might be the case, for instance, when the angle A10L is

small; and this would mesan that the cross-spin 7 is small, i.e., the shell axis
A;l is moving only slowly. The situation again may be such (Figures 3a and

3b) that the triplet A s @ and L rotates as a rigid plane about T, In

particular, if M is an overturning torque, ) is still on the sams side of
A as L is, though much farther away (Figure 3a). Or, if M is a righting
torque, T; must be on the other side of 51 from L (Figure 3b), The motion,
again, is a rolling of the same cone A10m on the cone wOTl. For spin~

stabilized shell the angular velocity of the plane of yaw is in the same
direction as spin, but much slower than the rate of vacuum mitation; for
fin=stabilized shell, however, the motion is in a direction oppesite io

spin.

Such a motion is called precession. In it the yaw consists mestly
of the quasi-precession, but there is alsc a slight component of quasi-
mutation.

Nutatlon and precession are obvicusly pretty mach the same kind of
phenomenon; the difference between them appears to be merely quantitative.
In fact, this seems to be precisely the case as far as the original,
astronomical, usage of these wards is concermed; the phencmena which
go by these names are of the same nature, viz., the substantially
circular yawing motion of an axis of a spinning symmetrical rigid body
under the influence aof certain external torques. TYet it would nol be
right to ignore the sense of the qualitative distinctiom, conveyed
by the very choice of the wrds: precaession, coming from the same root
as “precede", "proceed®, "procession", emphasizes the stateliness, viz.
steadiness and slowness, of the motion; while mitation (mesning nodding
emphasizes the disturbance, the unsteadiness, = l.e., perturbation, ar
oscillation. Thus, while we now find it convenient (frem the mathematical
point of view) to consider these two phencmena separately, and as being
on & par, it is essential to keep in mind that historically they arose
&s components of & larger, more complicated, motion; and that ths pre-
cession is somehow more fandamental, the mmtation being of the nature of
& refinement on the precession. _

In our case the qualitative distinction is that the mutation
emphasizes the motion of shell axis about the vecter of angular momentum
(s0 to say, 2 kinematic concept), while precession emphasizes the motion
of the vector of angular momentum zbout some other axis, in this case,
trajectory (& dynamic concept). Our concepts of "gquagi-mitation® and
“quasi-preceision" serve further to crystailize this qualitative.
distinction. :

*hese terrs should be acceptable to purists: %“quasil means Ysomething
like™; and besides, like "mutation" and*precession®,.is Latin; while
"pseudo® means Yfalsely appearing as®, and is Greek. Yet the terms are
51111 rather vague: Quasi-mutation is really meant to be the essence of
mitation, and quasi-precession, the essence of precession.
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While the nutation and the precession, so dsfined, do not depend on
the assumption of litiearity of M(5), neither do they give us much help in
passing from these two special cases to the general (epicyclic) case of

yawing motion.* Their importance, however, 1s very mmch enhanced once

the asgumption of linearity of M(8), i.s., the smallness of €, is made.
Then their angular rates (and also, as the more slaborate thsory shows,
their rates of damping) become independent of the angle of yaw, and these
two types of motion become superposable. MNMoreover, they then become
"normel modes" of motion (viz., not only independent and superposable,

but also particularly simple modes). In fact, the elegance of the
mathematical approach amounts tc this: in the linear theory it is possible
to decompose any complicated (epicyclic) motion in two simple componenta,
mtation and precession., _ '

We decompose the yaw (the angle from T, to &) in an alternate way,

viz., into quasi-precession (the angle from T, to L) and quasi-mtation
(the angle from L to _4_1), essentially for the reason that these concepts

survive in any general, non-linear, theory: i.e.;"simp]y btring in the

vector of angular momertum. To describe the yawing motion, we must follow
the motion of L (as affected by the yaw and othsr factors), superposing

upen it the rotation of the quasi-mutatiénm: (about the instantanecus,

moving, position of L) at the steady angular velocity{). (This is

equivalent to a mumerical solution of an alternate form of ths differential
equations of motion). This decomposition, however, should not be confused
with the customary decomposition of yaw into mutation and precession (which
is possible only in the linear theory). The quasi~mutation and quasi-pretession
are not normel modes of motion, are not independent of each other, and are not
constant in magnitude and rate (as the mtation and precession are), In the
epicyclic motion the quasi-rutatien (if considered separately) and ths quasi-
precession describe not the simple spirals, tut epicycles (which, however, are
closer to circles that the epicycle of A—l is ). 4n additional shortcoming

of our presentation is that for slowly-spinning fin-stabilized projectiles
the mag:gitude of both the quasi-gutation and of the quasi-precession ia
near 90°, and the situation is somewhat less vivid, since the (small) yaw
is effectively a small difference between two large quantities.

While we spoke of these quantities (mtation, préceilibl, quasi-
mitation and quasi-precession), rather loosely, s Tangles®, they are not,
of course, simple angles (scalars); rathery esch one of them should

Unless we go into quite advanced mathematical theory. Recently L. H.
Thomas (Ballistic Research Laboratary Repart No. 339, "The Theory.of -
Spinning Shell®, 1952) hss introduced - by the method of variation af
constants - the concepts of nutation and precession into the general,
nop=linear, theory.



properly be specified by two mumbers (magnitude and orientation). The
situation is again particularly simple in the linsar theory, where

these quantities are complex mumbers, or "planar vectars®, and are
commtative (the order in which they are added is immaterial). Generally,
these concepts are not very elementary (they are, strictly, quaternions

or dyadics), but for our present purposes they are rather obvious concepts
of spherical trigoncmetry. '

METHUDS OF PRESENTATION

The interpretation of the yawing motion in terms of the rolling of
cne cone upon another, cannot, unfortunately, be extended to the gemeral,
non=circular, yawing motion. We therefore have to resort to the above-
mentioned abstraction, viz., to consider the motion of the shell axis
&.L instead of the motion of the rigid body as a whole. Ths latter

motion can 2lways be visualized subsequently, either by superposing ths
axial spin ©, upen the motiom of gl, or by constructing the vectar

from the instamtaneous positions of &) and L, and (1),

Let us imagine a sphers of unit radins, centered on the center of
gravity of the shell; the sphere moves with the shell, but does not
rotate ("remains parallel to itselft)., Let us view the interier surface
of this sphere from its center, and let us attempt to sketch the relation~
ship of the vectors based on that center, as it would then appear. The
directions in space would now map as points, and the angleg as certain
Wstraight" lines (the arcs of great circless. On such a sketch we will
be losing the distinction between the vectors of certain definite length,
and the unit vectors (which terminate on the surface of the sphere, and
which we distinguish by the subscript 1); thus, the vecter of the velocity
& of the shell is coincident with the vectar I,, etc. The exact manner

in which the spherical surface is mapped om our sketches is immaterial
at this stage: the surface of ocur sketches can be identified with the
spherical surface only when the angles involved are small (we are then
back in the linear theory), and whenever the angles are not small, we
mst revert to the three~dimensional representatign. Some of our angies
are inherently large: e.g., the vector M is st 90° to both I, and £1,

vector 7, is at 90° to ﬁ, etc.; it would be awkward to represent such

vectors as peoints on our plane sketches, but we can readily visualise
them as arrows projected on that part of the sphere at which we are
looking., ©Since such a projection can be made, so to say, in any
desired direction, the vectors so projected need not be confined to
any particular line on our sketches, tut must have only a particular
direction.®

¥
In exact terminology, the polar vectors (such as velocity and force)
become axial vectars (such as angular velocity and torque) om our
sketches, Obviously, we shall base torques on L, forces on I,, etc.
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Let us look forward as the shell fliea, i.e., let us center our
field of vision on the point (vectar) Tlg the vector 21 does not have

to be horizontal (though it is easiest to imagine it so). If the
trajectary is a straight line (usually not a bad assumption), the point
Tl is fixed in the surface of our sphere, and is a very convenient

point of reference. However, if the trajectory curves or swerves, the
point Tl moves. The velocity of Tl is easy enough to compute. The tip

of the vectar of (linear) momentum of the shell, mul, (where m is the

mass, and u the velocity of the shell), moves with the velocity equal
to the applied total (gravitational and aerodynmamic) farce. Hence,
that component of the applied force which is perpendicular %o 11,
divided by m, is the (vecterial) velocity of T, on the surface of our

sphere., We should also bear in mind that the total force may have a
component alang Ty (e.g., drag) which can cause additional effects.

Similarly, the velogity of the point L (the point of intersection
of vector L with the surface of the sphers) is the component of the
total applied torque normal to L, divided bty L (the magnitude of L);
again, there may axist other effects due to a component of applied
torque along L. It is interesting to note that the vector of applied
torque must be decomposed, therefore, along and across L - while it
is more natural (and in fact, is customary) to decompose it along and

across 1_1'1

While the vector of cross-spin 7) can be projected as an arrow
tangent to the surface of the sphers at the point Al, it is simpler to

use, instead, an arrcw representing the veloeity of the point A.l in the

surface of ths sphere. Ir magnitude this is M, and in direction this
is, of course, 90 countgrclockwise (on our sketches) from the projecticn
of the vector”) ; and 50" clockwise from L, .

In order to systematize somewhat the forhidding possible multiplicity
of the arrangements of the points Al, '1'1 and L on our sketches, let us

also adopt this convention: let us, as it were, -tip out head sidewise in
the plane of yaw. To wit, we shall draw the point Ll always directly

above the point Tl; this will not mean that the plane of yaw is vertical -

it is just easier to imagine it so. A naive attempt to depict the reader
in the procesa of visualizing an instantaneous motion of a shell is
given ip Figure L.

Let us adopt one more comvention. With the single point 4; on our

gketches representing all possibls yaws, we must still distinguish various
possible directions of the velocity of 4,: i.e., we must distinguish the

increasing and the decreasing yaws (or, an instantansously circular yawing
motion); as well as rightwhanded, left-handed and planar yawing moticns.
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On our sketches, to specify the direction qualitatively it is easlest
te refer to the points of the compass. Let us then repeat each sketch
four (or elght) times, with different possible directions (N, W, W, SW,
S, etc.) of the velocity of ﬁ%; and let us place- each component sketch
in the corrssponding directiofi from the center of the sketch as a whols,
Accordingly, our sketches will be arranged in the following scheme,
whereby the iastantaneous yawing motion is respectively:

increasing increasing increasing
left-=handed instantaneously right~-handed
planar
instantaneously circular ingtantaneously circular
left-handed , right-handed
decreasing : decreasing decreasing
left~handed instantaneously right-handed
planar '

In order to become thoroughly familiar with such a method of presentation,
let us now consider an example: let us investigate qualitatively the mechanism
of the familiar looped epicycle of a spin=stabilized shell with right-handed
spin.

MECHANISM OF AN EFICICLE

Let us refer to Figure 5a, and in particular, commence at the instant
when the instantaneous yawing motion 18 circular and left-handed. This
corresponds to the W sketch, and - as it will bs presently seen on Figurs
5 b = to the minimum of yaw.

Point L now must be above A.l. The overturning torque M mowes L to

the right, and the situation, obviously, passes into that described on
the MW sketch. '

New the situation has very pronounced features of what we shall
call "local instability". The yaw (T,4,) is growing, and particularly,

in groding at an increasing rate: for, not only is L to the right of
Ai; but -also: the velocity of Al is becoming, on ocur sketch, more

nearly vertical; both the quasi-precession and - particularly - quasi-
mitation are growing, as though stretched, to some extent, by the
torque M, so that with the constant angular velocity{lof the quasi-
rmutation- the linear velocity of A‘.I. is increasing; and finally, as the

yaw is growing, the overturning torgue ¥ is growing, and also is turning
to the left, and is thersby speeding up the velocity of L (it might be
also noted that presently M begins to stretch L, increasing thereby the
angular velocity {Lef. equation (2). If such a situation were to combinue
long, the yaw would be quickly built up to very high valuea (which it
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indeed would if the spin were too low, do that ()= L/B is small and
the velocity M/L of L is large). In practice, however, the situation
{because of sufficiently high spin) rapidly passes into thdt described
on the N sketch, and thereafter into that of the NE sketch.

Now certain inkling of stability becomes felt., If the spin is .
sufficiently great, the amgular velocity ) of quasi-mtation is also
great, and tbat of guasi-precession (essemtially the velecity M/L of
L divided by the magnitude of the quasi-precession), sma2ll. The plane
of yaw then beging to catch up with the quasi-precession. However, ‘
since the yaw is still growing, the velocity M/L is still increasing.
It is still possible, therefore, that the yaw might not catch up with
the quasi-precession (vis., A, might not catch up with L). It makes

only a theoretical difference if it does catch up eventnally, but

only so late that the yaw builds up to a large value. -If it fails

to so catch up (and in practice, if it catches up too late), the shell
is unstabls. HNots that throughout this NE regime the magnitudes of
the quasi-mutation and of the quasi-precession contime to grow.

Generally, however, 4, catches up with L, and the situation

passes into that of the E sketch, i.e., an instantaneocus right-handed
circular yawing. The quasi-mutation amd the quasi=precesaion now
cease their growth. It is now that the stability of the shell is
finally and truly manifested; in fact, i1t now becomes of interest to
formmlate the quantitative relations underlying the stability (this
wWe shall presently proceed to do). .
Thereafter, of course, the situation passes into that reprasembed
by the SE sketch; the yaw, the quasi-rutation and the quasi-precession
begin shrinking in magnitude. This contimes through the regime
deacribed by the S sketch and imto that of the SW sketch; after which
L overtakes ‘1 again, and the situation passea into the W sketch again.

Throughout the SE, 8 and SW regime the kinetic energy due to the crosa-
apin 7} is being converted into the potemtial energy of yaw, as the shell
is brought, against the overturning toerque, to face mare nearly imto
the wind, Thereafter the potemtial energy slips back (in the MW, N and
NE regimes) into the kinetic energy of cross-spin.

At this stage we do not care {(as yet) to assert that the shell
returas to its original angles of yaw and that the motion has & pericdic
character - eoven thongh this is indeed the case once our assumptions
are properly crystallized. In reality there exist a mumber of complicating
factars. Thus, the successive loops might become smaller, and eventually
beceme cusps; the epicycle then becomes 2 “rosette®, then a wavy circle,
and finally passes into a precession similar to that described above.

Or, the loops might grow; the epicycle would then pgss through '.l‘l;

thereaiter the loops would encircle Tl' » become more nearly like coincident
circles, and the ep1c§cle passes into rmtation. Again, the epicycls
might shrink (or grow) retaining its shape. What matters for our present
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purposes is that this, roughly described, mechanism af the motion survives
in any case; and that any changes in the motion of A.l can be accounted by
the changes in the motion of L and Tl.

STABILITY

Conce

A theory of yawing motion of a shell is essentially the theory of
gtability of a shell. While much has been written on the concept of
stability, the situation still seems unsatisfactory in spots. The word
conveys an idea that is mecessary and useful, but vague and having many
ramifications. The tradition of mpthematical approach demands that the
word be associated with a definite quantitative criteritn: for instance,
the shell is considered (in the 1inear theory) stable (im a certein sense)
if the sowcalled"stability factar® is greater than 1 (and then againm, it
can be less than 0 - and also, slightly less than 1 for spin=gtabilised
rockets). The trouble is, there are so many ramifications. We have,
for instance, the static stability (fin-stabilization), gyroseopic
stability (spin-stabilization), dynamic stability (the requirement that
both precession and matation are damping out = distinctly a consept of
linear theory); many iigenious combinations of these requirements are in
use. The subject of the trailing of the shell, obviously, is an aspect
of ptability. Accustomed to thinking in terms of the linear theary, we
are wont to take it for granted that we can separate the question eof
stability from the question of the magnitude of yaw (thét is in effect
dismissed a8 2 guestion of the comstants of integration); btut it ia
awkward to speak of tge stability of a shell which 1z performing a -
steady mutation of 85 amplitnde, and it is unfair to speak of the
ingtabjlity Bf a shell which in its whole trajectory changes its yaw
from 1 to 27, In the pone=linear theory the cemcept of stability be-
comes dependent upoen (iie., inseparable from) the magnitude of y=w
and other initisl conditiona. In the more advanced thsoriss there
exists a need for still other stability criteria, that have not as
yet been formtlated. Tims, in fact, the complexity of ithe problem
defeats the good intemtion of msking an intuitive lidea comcrete.

We feel, neovertheless, that the intuitive ldea of stability of
a shell is pricr to, and independent of, all quantitative criteria. -
We therefore propose that the essence of the contept of stability is
a prediction: an assurance that the yaw will not reach large values.
Naturally, a prediction can be only as good as the informatiom
on which it is based. If = like a Maxwell demon = we kmew literally
all there is to know about the shell at a given instant we would surely
be able to predict exactly the behaviour of the shell for the remainder
of its flight. The more advanced theories of exterior ballistics cam
do no fipre than attempt to appredch this situatien. The linear theory
obviates the difficulty (of our ignorance) by the simple expedient of
resorting to clearly specified assumptions; it is preocisely this
gpparsnt ambition of the .linear theory which gives to the student of
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ballistics the falss hops that a complets prediction is possible (and which
leads to the natural - and at this time apparently well=entrenched - demand
that any theory give a complete prediction). The fact is, the accuracy,
and the surety, of a prediction depends upon the range (say, the interval
of time) to which this prediction is to apply. In most practical cases,
probably, the linsar theory can give an excellent predietion for, say,
several periods of yaw (e.g., a linear~theory epicycle can be fitted to
well-nigh every stretch of several periods of yaw). For a time interval
of, say, one eighth of the period of quasi=rmtation the reader can make

a fair prediction simply by visualizing one of our sketches. But in the
very general case (say, a highly complicated force system) a good prediction
can be made only for a very short time interval.

What, then, is the meaning of stability? Obviously, it must be viewed
in relation to the length of time to which our prediction will apply. We
may speak of "local" (instantaneous) stability; of, say, "short-range®
stability (the assurance that, if the yaw is increasing, the increase will
come to a stop and will be followed by a decrease); and finally, of various
degrees of "long=range? stability (an assurance that the subsequent maxima
of yaw =~ second, third, perhaps hundredth,will not exceed a specified number.

In the regimes of SE, S and SW sketches the local stability 1s inherent
in the initial conditions: the yaw is decreasing. In the regime of W sketch
the stability, even if it does exist in some sense, is no} manifest. Even
if the W regime passes into the NE regime, the stability is not certain;
stability can be implied omly by the assurance that the motion will indeed
reach the situation described by the E sketch, when the point Al rolla, so

to say, over T.. Let us now inspect, quantitatively, the situation at such
an instant.
Formmlation ‘

let, on the B sketch, the magnitude of yaw (AlTl) be 8, the magnitude
of quasi-mtation (ml) be #, let M be positive (spin-stabilized shell) and
let T, be stationary (rectilinear flight). The velocity m of A isn sind,
or (1/B)sing (cf. equation (2)); the angu.lar velocity of A, about T, is
(L/B)s::.nﬂ/sinﬁ. The velocity of L 15" M/L; the angnlar velocity of L
about T is (M/L)/sin(6 = @¥). The stability requirement is

(L/B)sing/sind > (M/L)/sin(6 ~ &),

and (gsince in this example M is positive, and no angle exceeds n), can

be written as
(LéB)s:tngésinﬁ i} Lzsin% sin(6 = §) «
3in(5 - B 5in 21, (3)

where M is written in the form which reminds uas that it is the functiom of
of 8. This is the stability factor relation in a generalized farm (although

General'l.y, it is Hcos(L,B)/I. (cf. Fig. k); but for the E sketch the angle
(L,B) is zero.
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the left=hand: side of this inequality is not necessarily the stability
fagtor, as shall be explained presently).

Linsar Skelston

For the sake of both simplicity and check, let us revert triefly to
the assumptions of the linear theory. Thenl z (because of the smallness
of § = cf. Fig. 1), M = u6 (u a constant), and sifies are equal to their
sngles; (3) becomes

12,2
ot @/e - /) 21 | (3)

The product (@/6)(1 - #/6) has a maximum velue of 1/4, occurring at
@ = 6/2; even with this ¥, there remains to be satisfied the inmeguality

22
A oy ‘
SE 21, (3n)
which is the definition of the stability factor s. The physical significance

of the stability factor is thus particularly simple: for a given combination
of A, B, @, and u, the stability factor is the maximum possible ratio of the

engular velocity of the plane of yaw to the anpular velocity o6f quasi=pre~
cesgion. This ratio occurs only at very particular circumstances; at the
maximmm of yaw, and when the vector of anpular momentum bisects the angle
of yaw. It is at these circumstances that the stability is most clearly
manifested. It is interesting to note that the epicycle of the linear
theory in these circumstances passes through the origin; i.e., this 1s

the familiar case resulting from the initia) conditions & = §, 45/dat ¢ 0.

Given s31, (3') can be satisfied not only at § = §/2, but elso
in & certain neighboring range of @. At the extremss of this range (3?)
is barely satisfied, i.e., becomes the equality

Ls(g/6)(1 - §/56) = 1,

which can be rewritten as
(#/6)% - (#/6) + L/is = O, o (3a)
and has the two solutiomns,

(B/6)y 5 =F (L 22 =1/6) = (L 2 8)/2, say,  (3B)

These two extremes are, of course, mutation and precession., In
mtation L is closer to T, or ¢/5 is more than 1/2; 4, moves fast

because of the large @, and L just barely keeps up with 4. In
precession L is closer to A5 and,because of the small @, A, moves
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only slowly, and just barely keeps up with L. Ths instantaneous motion
of the body in both cases is rotation about w at the same angular velocity
w; or, the motion of L.L in both cases is rotation about L at the same

angular velocity{ L. But the reader should réemember that these angular
velocities describe the rotation (of the body, or of the ®vectar® of quasi-
mitation) about the instantanecus (i.e., stationary, as it were).position
of @ and L, and that the points @ and L are moving. The situation is
simple enough with quasi-precession (L moves with velocity M/L}, o with
the rotation of the bedy (it is rolling), but with regard to the quasi-
mtation the situation 1s not quite the same sort of thing for which oms
is accustomed. The concept of the angnlar velocity of the quasi-rmtation
could have been introduced as the angle between two subsequent positions
of quasi-mitation divided by the time :anrement;* this was not done
because such an angular velocity would not be the same as the constant (1},
and wonld not be as convenient; different such velocities can be produced
by the sameil.

The variation of the shape of epicycle im the rangs (1 - 6)/2
< g/6<4(1 + 6)/2 is very interesting. If we decrease #/6 below 1/2, the
locps begin to miss the center, become smaller, and epicycle passes through
a rosette to wavy circle and imto precession; if we increase §/6 over 1/2,
the loops start going around the origin, increase, and the epicycla passes
into mutation. In either case, the variation of the magnitude of yaw
diminishes, vatil it finally disappears in the corresponding circular motion.
Thus the rapid variation of the magnitude of yaw (as in the epicycle
pasging through the arigin, with #/6 = 1/2) is a token, or a manifestation,
of stability.

Outside of this range of @/ the inequality (3') is not satisfied,
and the stability, even if it does exist in some sense, is not manifest
in the regime of the E sketch. This sketch then represents a minimm,
rather than a maximum, of yaw. With the smaller #/6, the epicycle will
be a wavy circle; with the larger @/6, the resultant epicycle will loop
over the origin,.

A very impartant borderline case is that of s = 1. Precession
and mtation then merge, and a2 bare manifestation, o a minimum, of
stability (viz., circular motion) becomes possible; and that, only at

* I fact, In the linear theory, when mutation is considered a vectorial

- component of yaw, this 1s exactly how the angnlar welocity of mutation
is defined; it is useful there, for such angular velocity thea happens
to be constant. Presently, when we shall relax ths aasumption of the
stationary Tl’ we shall meet the same difficulty with the quasi-

precession,
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the most advantageous condition, §/6 = 1/2°. Note that such motion is
still possible at all (small) angles of yaw.

More General Cases

With this understanding of the skeleton of the "short-range® (inm
this case, gyroscopic) stability we may relax our assumptions of limearity,
and return btriefly to the more general problem, i.e., to (3). Now we
have more exactly (subject, of course, to other assumptioms here implied)
L = An /cosf (cf. Fig, 1), and M = psinb (where y so defimed im not
necessirily a constant, but is certainly more nsarly so than M). Then
(3) becomes

A2 2
©1  sing sin(
Bu(E) cos @ sin &

which we shall write as sf(g,6)>1, with E‘Azmi/hﬁp(é) and f =

hs:lnﬁsin(&-ﬁ)/coszﬁsinzﬁ. While (4) is still similar to its linear
analog (3'), the important difference is that with the larger angles the
trigonometric part of (4), ar £/k, can have values greater tham 1/4, and
the stability requirement is thereby made less strigent.

> 1, ()

The very interesting function f£({#,5) is givem, as a contour plot in
the (@,5) plane for 0K P <6< n/2, on Figure 6. The most importamt region of
this surface is the region of small § and 5, where the two contour lines of
f = 1 merge; this is the domain of the linear theory. In this region the
function has a practically horizontal crest, or watershed; this crest
extends, as a razor wedge, right to the point § = 6 = 0, which represents
a steady nose-on flight. However, on the boundary lines radiating frem
the aigin the function is zero, and the manifestation of stability is
impossible. Im particular, the abscissa (@/6 = 0) represemts the
situnation when the axis of a spinning shell is momentarily stationary
(as in the cusp of a rosette), amd L is sweeping across the plane of yaw.
The L5~ line, §/6 = 1, represemts the situation when L sweeps across
the trajectory, and therefore rotates at an infinite angular wvelocity,
as it were, about the trajectory. In the linear region the crest lies
along the line @/6 = 1/2; on the extension of this line (which, for
moderate yaws, is not far from the true crest) the functien has the

The mathematical linear theory shows that when two independemt solutions
merge into a aingle one, as here, there arises, as the second possible
solution, the Ysecular" solution; in this case, it is an expanding
Archimedean spiral. When s becomes less than 1, both the circu and
the Archimedean solutions pass into logarithmic spirals (respectively,
shrinking and expanding). The blend between various types of solutions
can be inspected as a matter of initial conditions (constants of
integration}, For instance, with arbitrary initial conditions and with s
barely over 1, the NE regime will be very leng, and the maximun angle

of yaw very large; with 8 of 1 or less the NE regime will continue until
the yaw reaches values so great that the linear theory no longer applies.
We have avoided such difficulties by the simple device of considering
only the initial comditions of the E sketckh. ,
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v?he lfcosh(G/Z), which (for these yaws) is only .slightly smaller than
1l/cosb,

The point f = 6 = n/2 represemts a pure cartwheeling of the shell,
i.e., cartwheeling without any axizl spin. At this point the functiom
{ may have any value from zero (since it is on the line @/6 = 1)to
infinity (since it is alsc on the line 6 = n/2, which represents the
cartwheeling of the axis of the shell, and on this line f becomes simply
Ltan@). Indeed, at =uch conditions manifestation of stability rather

loses its meanirg. _ :

It will be seen that the true crest of our surface approaches this
“infinite peak" (the singularity) in a rather devious way, first going
outside of the limits of the triangle 0< @g<&<n/2., It is importamt to
note, however, that this Wpeak" can be reached without going outside of
this triangle; i.e., all values of f are represemted in this triengle.
This means that for any shell which is unstable in the linear=theory
sense there mey exist combinations of ¢ and & such that this shell will
still manifest stability.

The stability condition ¢an then be visualized as fallows., For a
given & (which we may now term %linear stability factor®) we may imagine
on Figure 6 a point with map coordinates ¥ and & and at.the height 1/s.
If this point is above the f-surface, the stability condition (L) can not
be satisfied (the regime of the E sketch, even if does exist instantanecusly,
can not contimme, and will pass into the regime of the NE sketch). If this
point is in the fesurface (on the contour line f = 1/s), the circular yawing
will contimme (the stability is barely manifested). If this point is under
the f-surface (inside the loop af the contour line £ = 1/s), the stability
is clearly manifested (the regime of the E sketch will pass inmto that of
the SE sketch, and the yaw will presently start decreasing).

Naturally, the possible circular yawing regimes might be divided
(say, by the crest of the function f) into those of nutation and precession;
the rates of nutation and precession can thus be computed, either as the
rate of the plane of yaw (L/B)sinf/sinb, ar as the rate of the quasi=
precession (M/L)/sin(d - #). We may thereby relax now the reguirement
(mentioned above as a matier of convenience of the presemtution) that M
be mmall. These rates, however, are no longer independent of the initial
conditions (the magnitude and the angular rate of yaw). Moreover, these
two regimes are no longer separated, on Figure 6, by the regime of the
circular yswing motion of a barely,projectile (as they are in the linear
theary); rather, mutation and precession can now be blended acroas the
crest of the f=surface. The multiplicity of possible solutions in the
region of this blend corresponds to the fact that in the linear theory
a barely stable shell may yaw circularly at all (small) angles of yaw.

It may be noted on Figurs 6 that the true crest of the f-surface
does not represent exactly the minimum values of & at which a given
linsarity=unstable shell may manifest its stability. The interesting
question of what these values are has a particularly simple answer: .
the locus of the minima of & canm be found by finding the maxima of £
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in the planes of & = constant. The P-dependent part of (L) can be written
as

sing(sinGcosd - cosﬁsiﬁﬁ)/coszﬁ = cosb tang (tan§ - tanf{),

which is of the form ax(b - x), and has a maximum &t x = bf2, i.e., at
tand « (tan8)/2. Thus, the vector of angular momentum then bisects the
tangent of the angle of yaw erected on the axis of the shell (Figure Ta),
rather than the angle, as in linear theory. This locus merges, of course,
with the line @/6 = 1/2. At these conditions the value of f is simp
1/cog6. Therefore, the generalization of the stability condition (37

of the linear theory is

8/cosd > 1, (i)

with the provise that at the critical & stability be manifested
only if the yawing is instantansously circular and @ has a particular
value. This proviso corresponds to the fact that in the linear theory
a barely stable shell may manifest stability only at particular inltial
conditions, viz., at @/6 = 1/2,

In fact, in advanced texts on ballistics the stability factor is
defined with cos8 in the denominater, i.e., as the left-hand side of
(L*) rather than by (3"); we might then speak of the “non=-linear®
stabllity factor. Thisisquite a differemt thing from our linear stability
factor, and no longer can be viewed as a definite property of the shell,
independent of the initial conditions (as the linear stability factor
is usually considered); rather, it should be viewed as the maximum possible
ratio of the angular velocities of yaw and qQuasi-precession,

The requirement of a sufficiently high yaw (8) may be interpreted as
a requirement®of a sufficiently large quasi-mtation (@) ard a sufficiently
large quasi~precession (6 = @), It might complete a certain symmetry of
our arguments if we imquire, briefly, if lo¢i of such minima exist. In
fact, the locus of minima of ¢ is quite pronounced on Figure 6; it exists
from the linear domain to § of some 56 . Its equation is tan(6 = @) = (tand)/2;
i.0., for stability @ mst be sufficiently large at least to bisect the
tangent of the angle of yaw erected on the trajectory (Figure 7b). For
larger & this curve repressnts the maxima, instead of the minima, of @ on
the contour lines of f. The locus of the minima of & - @ is bagely
noticeable in the region from the linear domain to § of some 25, and seems
to be of no particular interest. .

The usefulness of the stability factor lies in its relation to the
mutational and precesaional rates. In the linear theory these rates are =

from (2), Figure 1 and (3B) = simply
M /6 =(Lg/6 = (4 /B)(#/6) = (hany/2B)(1 V1 = 1/8)  (5)

# For any 3 < 1.
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For any circular motion the non~linear amalog of (3A) can be shown to'
be

tan2¢ cotd = tand + sind/hs = 0, (LA)
go that the analog of (3B) is
tanf/tans = (1 + V1 = cosb/s)/2, (4B)

and the eircular rates are .
n /a:;a =fl aing/sinb = (Aaal/aj(tang/si.ne) = (4,/2B)(1 # Jl—coss/s)/co'aa* (6)
Example

The faregoing discussion was mainly the recital of the more interesting
conclusions from the theory of spimning top = for which case the assumption
of a constant i is particularly justified., While the analogy between the
shell and the top is quite traditional, a comparison between the linear
mathematical analog and the every-day experience with a top is met rather
less frequently; such a comparison might be rather illuminative.

In the actual top ths nutation damps out extremely ra_pid.'Lg (vy
processes of which more anomn, in comnection with Magrus torque), seo that
in practice it is observed seldem if ever., The precession also damps

cut quite rapidly; both the damping and the angular rates of precession
are readily sensed when we see a hard-spimning top right itself and “"go
to sleep®. TYet the reader will recollect that the top often fails to
regch the sleeping positiom, and contimew a rather steady "precession®;
also as the spin of a sleeping top is dying out, there imvariably develops
the same, relatively slow, precession = which gpeeds up as the yaw
increases, just before the top falls, Thsse familiar "steady® motiona,
apparently, are not the precession in the customary ballistic. sense

(vhick is a result of disturbance, expressed by a sclution of a
homogenecus differential equations 3 rather, they are the motions of a
linearly-unstable top, which is barely stable (has the nop«linear
stability fastar s/tosd of 1) at the given angle of yaw. Any oscillations

® The apparently peculiar behaviowr of the last expression in (6) at
6 = n/2 can be readily accounted for by inspecting the legitimacy of
our mathematical manipulations at this 6. The precessicnal rate
(which appears indeterminate) then is simply Aw tand/B, i.e.,M. That
the nutational rate iz not infinite can be seenas followss Fram
(4B) or Figure 6 it is seen that mitation at 6§ = n/2 is possible only
if ¢ = n/2, i.e,, if the axial spin ®, 1s zero, and the apparently
indeterminate (6) then amounts. to 7)apain, = with the additianal
provisé that if the motiom is to be circular, as assumed, M must be
zero, The trick diffieulties of this kind are inspected best by
examining the physical significance of the problem (e.g., Figurea 2
and 3), rether than the legitimacy of algebra,
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of this angle rapidly damp out, apparently by processes similar to
the damping of the ballistic mutation and precession; in case the
non=linear stability factor is less thamn 1, the top merely builds up
its yaw till it is none-linearly barely stable at some larger yaw; the
speed=up of the precession (in spite of the decrease of ;) Just before

the top falls is the conseQuence of the presence of coa® in the denominator
of (6). Thus it is the usually-neglected border-line case of the linear
theory, rather than the theoreiical epicycle, which is the ancestor of

the commonly~observed motions in the nonelinear regime. It is extremely
easy to confuse this motion of non-linear regime with the ballistic
(linear) precession; i.e., to consider it, erronsously, a matter of initial
conditions. 4 shell with an insufficient linear stability factor may

not exactly %tumble%; it is still ®stable® in 2 sense. It is just that

its yaw is undesirably large.

PREDICTION OF THE YAWING MOTION

In the tradition of mathematical approach the stability comditiem
stands somehow apart from the solution; although it is understood that
it ie also a kind of a short-cut summary of the character of the solution.
We interpreted the stability condition as an attempt at the prediction
{i.es, the solution) itselfy and we found that a comsideration of an
instanmtaneous situation may, in a mumber of important specizl cases,
yield a modicum of a long=range prediction. We avoided a gquantitative
discussion of the local stability (viz., of the question whether 2 pre-
diction for a short length of time augurs well or 111 for the decrease
of yaw); ard discussed quantitatively only the shorterange stability,
which is, &s it were, the local stability at the instant of the first
maximm of yaw. Bub to get to the first maximum of yaw from srbitrary
initial conditions, as well as to get from the first maximum to the
second, third, etc., is a different, and a mere difficult, preblem;
in fact, this is the problem which has been solved analytically only
in the most simple cases (such as the linear theory, or the cese of
the M-torque acting alone), and which requires, genmerally, modera
highespeed computing machinery. ‘

In the linear theory the gensral solution is oblained by the'
superposition of the simple matation and precession; and the super=-
position arises naturally, as a property of solutions of a linear
differential equation. As 2 matter of a mere exercise, or of an
inquiry how far we can go without caleulus, the following interpretatiom,
or a derivation of the superposition might be of insterest.

For any yaw $ (which in thelinear theory is simply a complex
number) there éxist two possilile rates, say§, and ps @ which the

motion would be the simple (circular) motion; for each one of these
possible rates the given ¢ must be decomposed imto Quasi-precession

and quasi-nutation in a definite way = which, as we have seen by (34),
is indepemdent of { . The actual instantaneous rate ¥ of { , generally,
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is neither one of these. Now, two complex numbers, Gn and GP, can easily
be found such that C_ + C_ =1, and (= cnfn + cpgp. Obvicusly, { may
be decomposed into 'cnt and C 1 ; a brief geometrical or algebraic con-

sideration, detailed on Figure 8, will show that the quasi-mitation and
quasi-precession may be decomposed similarly (e.g., on Figure 8, -
QP = C QP + CPQPP); the vectors QP and QPP are desigrnated on Figure 3

by Ln and Lp. Alsog, the projected vectar of the torque M may be
decompose& in the same way.

Now, it does not matter which component of torque acts on which
component of angular momentum, as long as the total M acts upon the
total L. PFurthermore (but this holds only in the linear theery), it
does not matter how the quasl-mtation is decomposed. All of its
componentg are rotating (about the corresponding stationary positions
of L) at the same angular velocity {1, and the velocity {. (or#) ) of A

is, in any case, the vectorial sum of the velocities produced by the
components of quagi-rmtation. We therefore can assign, arbitrarily,
the following relations. Let the torque produced by the Gnt component

of yaw affect the Gl_,lﬂll"151 compenent of Quasi-precession QP; and let the

angular momentum component, represemted by that component of quasi-
pPecession, produce - by means of the corresponding component chNn

of quasi-mtation QN - the component C_{  of {'; with similar relations

holding, of course, among the components with the p-subscript. We can
then note that among the components with each subscript the motion is
known, i.e., predictable, circular motion., Therefore the C's will

remain constant, and the general solution is a superposition of precéssion
and mutation.

While this intrepretatian is particularly obvious in a highly
simplified case (rectilinear flight, constant velocity, only M present),
it is not vitiated if we pass to the general (linear) case. We nead
only to re-label the cemponents C,{ and ¢, fas ¢ { (%) and GPL' p(t),

introduce the yaw of repose and the more complicated system of torques
and forces, (all of which, however, must be linear homogeneocus functions
of ( and [), introduce the motion of T, etc., and re=trace the

argument more slowly and more laboriously. In fact, the component
moticns { n(‘t.) and fp(t) may be quite complicated: e.g., such parameters

of motion as axial spin, velocity and stability factor may all changs =
provided they change in the same way for both tjn and tp.*

*The latter requirement rules out, in the linear theory, such phenomena as
instability of spin (BRL 668), cases when the yaw=drag affects the trajectory,
etc.; those are domain of non-=linear theories. It is not quite idle to remark
that the component motioms need not even be precession and mutation ! They can,
equally well, be any two linearly independent epicycles. Such procedures are
indeed often resoerted to, when various linear perturbations of flight data
must be carried cut.
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Once the superposition is accepted, such facts as the absence of

damping with M alone acting on the shell (and with ¥ being a fumction
of 6 alone), a3 well as the complete prediction of notion, folluw
readily., In this comnection it is well to note the distinctiom between
the dynamic and the long-range stability. Consider a shell whose
mtation damps rapidly, mt whose precession grows, albeit very slawly.
In the clean=cut tradition of the mathematical approach, such shell is
automatically classified as dymamically unstable. Our apprcach seems
(in that case) more tolerant, or more nearly attuned to the reality.

If the initial yawing motion is mostly nutation, we would say this
shell has a long-range Sstability for so-many periods of yaw, or that
the instability would not be manifested until sucheand-such range, or,
again, that the stability depends upon the manner of launching. This
is certainly no differemt from what would usually be done: it is just
that our ®long-range" stability corresponds to the final calculations
of the linear theory - or, to proof=firing results - rather than to
the abatraction of dynamic stability.

- An attempt to systematize the resultant possible mltiplicity of

epicycles is givem on Figure 17. It is amusing (and from our “non~
mathematical® point of view, chastising) to observe that in practice
the simplest way of drawing these curves has been to construct the
appropriate differential equations, to compute the appropriate initial
conditions, and toc solve thege equations mumerically on an electronic
d:t.fi‘erent.:.al analyzer (@EDA).

Even allowing that the general non-linear czse is not solvable

analytically, it is of imterest to inquire whsther there might not be
some simple non=linear cases, €.g., in the case of M acting alome, and
being a function of § alone. Unfartunately, the theory furnishes no
gimple and useful answers there. Bven if we are to prove the very
relevant fact, that the yawing motion in such a case is mot d.m_gggd , it
ig difficult to keep up our pretence of avoiding the calculus

Iet us now inspect the consequence of the various componenta of the

force system acting upon the shell - qualitatively in the general case,
and quantitatively in the linear case.

*

e

This work was done by Mr, E. E. Bomberger.

Aa was mentioned before, the general solution has been worked out,
but is cumbersome. In the case of spinning top {constant p) the
selution is in terms of elliptic integrals.

Tet we might attempt to outline the proof, very roughly, aa follows.
Since M 1s perpendicular to the shell axis, the axial spin cannot be
a.ffected and gince M isg perpendicular to trajectory, the componant. of
L along traaectory camnot be affected. It can bethen showsthat s:.nca
H depends upon & alcne, there exists a potential energy of yaw, and
therefore the system is what is known in mechanics as conservative;
and such systems, generally, possess constant total energy and represent
oscillations "¥n a potential well", with constant amplitudes. Such
vague "reasoning® is not without its legitimate place in ballistics;

in fact, it is more logica.l than, for instance, an 'insistence on a
large stability margin of a mortar shell! This intuitive groping for
"constants of motion" can be recognized as a primitive form of the
Hamiltonian mechanies. -



FORCE SYSTEMS (OF BALL]BTICS

In recent years the fact began to be recognized that, the force syst.ems
used in exterior ballistics were rather oversmphficatiuna of real:.ty.
Nevertheless, for practical purposes an idealigation is, of course, in-
dispensable; it is just that a realization of just what has been assumed,
or taken for granted, must now be kept in mind more prominently.

The first restrictive assumption 1s that of Synge's aerodynamic
hypothesis: that the force system (viz., total force and total terque)
can be specified by specifying the vectorial velocity and angular velocity
of the shell®™ The next systematization is the Maple-Synge analysis of the
consequence of the symmetry of the shell.” This systematization is
particularly useful in investigating the border~line between the linear
and non=linear theories. It restricts somewhat the number of possible
non-linearities which cught to be considered. The usefulness of this
systematization in the general non=linear regime is, unfortunately,
limited, for two reasons. It is difficult to design experiments s0
that all probably relevant Maple=-Synge coefficiente can be measured;
and even if they were, the mathematical utilization of them would be
extremely laborimus.

There are two kmown ways in which a further necessary simplification
of Maple=Synge theory may proceed. The most important one, of course,
is the linearization ***aof the Maple<Synge theary. This excludes a mmber
of coefficients which are known to be relevant, and includes same whose
relevance seemy rather marginal. The most elegant feature of the linear-
ization scheme (in addition to the fact that it dovetails with the supere
position of the linear theory) is that it furnishes a convenient coordinate
system for decamposition of the force system; forces and tornes dependent
upon & are decomposed along and across the plane of yaw, and those dependent
upon'f] are decomposed along and across the arrows of 7) in cur gketches. This
gives rise to the well=known Kelley=McShane matrices of forces amd torques,

¥ 8o that 2 mumber of extant ballistic texts now appesr, in‘retrospect)
rather didactic.

" This assumption seems to be rather peculiar to ballistics. In the
advanced aeronsutiocs  bhe .etiempts to rescind this assumption dates
to the 1920's, Cf. ERL 882, “"Dynamic Measurement on 8lmm, M56 Shell
in NBS Wind Tunnel", for reference and for brief discussion.

S

Chronologically, of course, the linearized (Nielsen~Synge) version
of Maple=Synge theory preceeded the more complete theory.
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which will be discussed in detail presently. Its usefulness as a
classification scheme survives, to some extent, sven in the non-linear

theory.

The second known way is the adoption of cirgular yawing motiom
(rather than small yaw) as the basic form -of yawing motion. The
most troublescme Maple=Synge coefficients are ther excluded, and
experiments can be readily designed by which all terms of the Kelley=-
McShane matrix can be measured -~ whereby this matrix can be considered
non=linear, and merely an aid in classification. The mathematical
utilization, wnfortunately, remains difficult.

What is probably wanted first is an applicatiocn of the Maple=Synge
(or seme other) theory of asrodynamic forces acting on a given surface
of the shell (and independent of the mass distribution within the shell)
to a class of "possible?, or at least "probable®, yawing motions - if
such classes can be defined. Circular yawing motion, for instance, is
ugdeful because it is a sort of approach to such a class. In fact, this
application is achieved, perforce, in free-flight experiments. It should
be noted, however, that the determination of the aerodynamic farceas from
the free-flight data is not a simple procesas; generally, it depends
heavily upon an existence of a sufficiently idealized mathematical theory.
Such a theory must start from a certain assumed force system, or, as it
were, from a wind-tunnel point of view. It is hoped that this gap, as it
were, between the possible free=flight technique and the complete non=
linear Maple=Synge theory will be eventually bridged by extensive use
of high=epeed computing machinery, and by elaberate wind-tunnel
instrumentation which would reproduce circular,elliptical, spiral,
epicyclic, etec., yawing motion.

These vague generalities have cited here with the object of shewing
to the student of exterior ballistics the present groping state of the
art: it is difficult not only to build a general nen=linear theory,
but ever to formlate a gereral non=linear force systemj; and this even
without considering asymmetries of the shell, liquidity of the filler,
transitions from laminar flow, separation of the flow, intermittency
of the turbulent wake, etc. Small wonder, then,that the linear theory
remaing a point of diminishing returns!

DAMPING TCRQUE
Next to'M in importance is the component of torque known as
"damping® torque and designated by H, Specifically, this tarque is

defined by an understanding that in direction it opposes the angular
velocity v of the shell's axis, and in magnitude it depernds essentially
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on?7) « In the linear theory it is assumed to be proportiomal to 77
(i.e., to {), and is therefore mathematically analogous to viscous
damping of a harmonic motion.® The choice of the term suggests that a
hope must have been entertained that a torque so defined will account,
in the main, for the damping of yawing motion. In fact, this is very
nearly the case = although the damping of the yawing motion involves
a number of phencmena other than H.

On Figure 9 H appears as an arrow directed from L to A ; i.e., it
tends to shrink the Quasi-mtation I#ll by pulling L toward X,. Its

effect upon the quasi~precession depends upon where Tl is with respect
to L and Al; and in particular, in any circular yawing motion in which
L is between Tl and A‘.l.’ H tends to strebch the quasi-precession.

This simple formulation, however, has led to ome of the pitfalls
(mentioned in the imtroduction), whieh stunted for a while the development
of our "non-mathematical® approach. For instance, in the linear theory
precession and rutation are substantially circular yawing motions, at
a constant §/6, i.e., with a constant proporticn of quasi-mutation and
quasi=precession. The theory shows that H damps the nutation, and causes
a growth of precession. Thug in nutation H seems to cause a shrinkage
of quasi=precession, and in precession H seems to cause a stretching
of Qquasi=mtation = in a seeming contradiction to our simple formlation.
In fact, a stimulzting question was once asked = In a circular yawing
motion, how does the torque H distinguish between mutation and preocession?

These pitfalls are simply mistakes that are easy to fall imbo, but
also easy to guard against. It is easy to forget that a shrinking o
stretching of quasi-mutation and quasi-precession msy be accemplished
by the torque.M, as well as by H. It is also edsy to assume that a yawing
motion circular in the absence of H will remain, after H is intréduced
a precession or a mtation (actually, it will develop into an apicyeles.

In the presence of H the mutation and the precession are no langer
circles, but spirals. In particular, in the linear theary we should lock
for those spirals which are “steady"; naturally, this means unchanging
ratio @/6, This can indeed be the case if the torques shrink or stretch
the quasi-precessicn in the same manmer, proportionally, es the angular
velocity 7) shrinks or stretches the yaw 6. Two such possible cases are
shown in Figure 9. 4 shrinking spiral (SE regime) means L lagging behind
the plane of yaw; then M has a component which shrinks the quasi-precession
working against the stretching action of H. An expanding spiral (NE regme5
means L ahead of the plane of yaw, with a component of M stretching the
quasi-rutation (against the shrinking action of H) &g well as the quasi-
precession.

—

However, H has nothing to do with the viscosity of the zair.
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Specifically, ocur requirement now is that the proportions of the
triangle T,14, (rather than only the ratio @/6) remains constant; i.e.,
that the angular rates of both L and Al about ‘1‘1 be the same, and the
angle between quasiw-precession and the total torgue be the same &g the
angle between the plane of yaw and the arrow of 7). The spiral thenm,
in particular, is & logarithmic spiral (this corresponds exactly to the
situation in the mathematical approach, where we solve a differential
equation by inquiring whether there may not be solutions the Yorm

elt). In particular, we may assume that the angles m1A1 and I.Ej_‘l‘l are

small (the assumption of small torques, and hemce small damping rates,
is « together with the assumption of small yaw = & characteristic feature
of linear theory). Then on Figure 9 wé must have :

(n/2 - B) + BM = w/2 - ¢ (8)

Substituting H « hn, 7= (A /B)f, M = ub, and B = 4@/(6-f) we mey
" solve faor 4 in terms of the ratio @/6:

¥ = bllay/Bu)(g/6)(1 - g/8)/(20/5 - 1)  (8Y)

Since the triangles are very flat (spiral is rmch l:i.ke‘ L} circlé) ’
we may take it that /5 is as given by (3B); then |

¥ =B =B ()
From the definition of o in (3B) it may be readily noted that
2 1o a2 2 '
1-0°= L4Bp/A g

80 that uporn substituting this into (8") and cancelling, we have the
simple and curiocus result, ‘ -

i.e,, the spirals of nutation and precession are mirror images of each
other, Hmvars since nutation goes around faster, it shrinks faster,

Multiplying (BA) by the angular rates as given by (5), we have the propor-
tional radial rates (the radial components of 7] divided by 6), with respect
to time, as

yn /6 = * (b/hn o) (4, /2B)(1*0) = (n/2B)(1* 1/0)  (8B)
To compare this with the result of the standard’ballistic texts (cf.,

particularly, BRL Li6), we may substitute h = \_Kﬂpdhu and B = mk°d%; then

the factor h/B is (Kﬂpd3 /m)u/kzd, where the group of factors in the
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parentheses is usually written as Jy, so that (8B) becomes (JH/2k2)(n/d) (1£1/0).

The factor u/d drops out whem we change the independent variable from time to
the distance travelled by the shell and expressed in calibers., Thus, finally,
the proportional radial rates are

(3,/26°) (141/5) (6¢)
in agreement with the linear theory.

A curious student might inquire here whether some of our simplifyipg
assumptions might not be rescinded at this peint. Indeed, the recission
of the assumption that the damping is small would be a straight-forward =
if laborious - algebraic task; but the cumbersome result of this task would
not be particularly useful, simply because this assumption is, generally,
in excellent agreement with experiment., More important - and more difficudlt -
would be a recission of the linearity. On a sphere there seems to be no
clean~cut analog of the logarithmic spiral®™ - or, more exactly, it is hard
to choose between many imperfect analogs. A& crude sketch of several of such
~ analogs is given in Fig, 10, We shall not inquire which ones of these analogs
constitute "possible" yawing motions, and under which assumptionsi it seems
probable, for instance, that several of such-like motions might result under
the identical assumptions about M(8) and EB(TM), if the initial conditions
are spitably varied - in some vague analogy to the blending between the
.nutation and the precession in the non-linear regime, What matters for our
' present purposes is that the idea of nutation and precession - which in the
non-linear regime has already lost its usefulness of superposition, and
survived only for undamped circular motions - becomes even more complicated”
(viz., less useful) when damping is introduced. It is hoped that mathema=-
ticians will eventually clarify these concepts.

So far we have only retraced, verbosely and laboriously, some of the
ground wnich is explored more swiftly and elegantly by mathematics; and we
have refrained from doing that which we have, in effect, promised the reader:
to defend the use, in ballistics, of that obviocus mental process which - for
want of a better name - we called "qualitative reasoning". Let us atiempt
it now. As soon as we broaden our approach by concerning ourselves with
‘an approximate (as well as exact) prediction, the non-linearity ceases to be
the bugaboo it was in any quantitative reasoning.

Let us consider a typical looping epicycle {linear or non-linear), with
loops falling short of the origin. We sense that this is a case in vhich
the quasgl -precession predominates, somehow, over the quasi-nutatiocn. The
phage relation between A'.L’ L and Tl alternates rapidly, and we surmise that

the alternating stretching and shrinking of quasi-precession and quasi-nutation
by M, on the whole, cancel; we may consider then only the direct effects of H,

o Since the sum of angles of a spherical triangle depends upon its size,

there can be, generally, no similar triangles {(as A L‘I‘l) on the sphere,

Ly



Fig 10: Examples of Rssible Non-Linear
\Sp/}—a/s Generated éy a Given -
Linear Logarithrmic Spiral
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We infer that the quasi-nptation definitely damps. 4s to the guasi-
precession, we observe that it is stretched when the angular veloecity 7]

is large (near the maximumm of yaw), and shrunk when 7] is small (near the
minimum of yaw); we infer that quasi-precession grows, but only slowly.

We therefore infer that the long-range stability is present, with the
following qualification. As the loops shrink, the shrinkage of quasi-
mitation slows down, and the growth of quasi-precession becomes more steady;
eventually, we no longer can assume that the phase relations oi‘ Al and L

cancel out, but surmise. that some steady phase relation, such as that of
of Fig. 9b, begins to be felt, i.e,, even the quasi-nutation will begin to
grow; i.e., the long-range stability will eventually cease; although, by
(8C), the growth of precession will be much slower than the shrinkage of
the nutation had been (this circumstance is also obvious from a comparison
of Fig., 92 and 9b: in precession H is smaller, and also it opposes, rather
than adds, in some ways, the action of M), Now, this is the case even when
we start with a motion in which the quasi-precession seems to predominate
from the start, Had we started with an epicycle looping over the origin,
the long-range stability would have been even more pronounced, sinea the
situation would more often resemble Fig, 9a; yet we cannot claim the long-
range stability for an indefinite range, as long as the situation is not
precisely that of Fig. 9a - for a perturbation of the steady phage relations
of Fig. 9a would tend to cause a growth of quasi-precession precisely at
those times when 7] is greater,

Thus , our qualitative conclusion (without going into any msthmtics)
is that quasi-nutation damps strongly when it is a sizable component of
yaw, growa slouly only when it is an unimportant component; the Qquasi-
precesasion damps strongly when it is an unimportant component of yaw, grows
slowly when it is the principal component of yaw. This. concluaion falls
pretty closs to what is predicted by the exact linear theory; yatr, it is
completely free from the assumpiions of linearity.

MAGNUS TORQUE

A pogitive Magnus torque™ on all our sketches pulls L up. Thus in a
general epicycle (if the oscillatory effects of M may be presumesd to cancel
out on the whole) T builds up the quasi-precession. The quasi-putation is
on the whole shrunk: for it is shrunk when § and T are large, stretched
only when 6 and T are small. The steady spiral motions.(Fig. 11) are posai-
ble if

(/2 =B) + TMan/2 -y (9)
Substituting § and M as before, and T = 1§, we can solve for T:
v = (4/w)Q - §/8)/(28/6 - 1) (97)

Magnus force is the force which deflects a spinning ball, and Magnus
torque is the torque produced by the Magnus force., The reader is
expected to be familiar with this (and other) historical background
of Magnus effects.,
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Using (3A) again, we have
yet (t/20)(L 2 a)/o =« (£/20)(11 F1/0), (9%)

i.e., the two spirals are no longer mirror imagest the preceasiop spiral
is steeper. Finally, substituting u = Aza:12 (1 - 02)/UB, t = Kypd and

Aw mkaad?, and reverting to the notation of BRL Li6é, we have the proportional

rates of growth of metation and precession as

- 2

+ (JT/ka )/d', ’ (9c)
in agreement with the linear theory,

The effect of T is somewhat similar to that of H, the & fferences lying
in the manner of dependence of damping upon the stability parameter o, and
also in the faet that T can be negative as well as positive., Many interesting
examples of the interplay of these facts are discussed extensively elsewhere
(cf., e.g., BRL 668 and ERIM 682). It should be noted that the study of the
effects of T seems to be one occasion where it is desirable - because of the
recently~discovered strong non-linearity of T - to substitute for the lineari-
zation (9') an exact, non-linear, solution of (9).

. An illustration of the effects of H and T (as well as the effect of the
aerodynamic forces, which we shall discuss presently) is provided by the
spinning top. The friction at the tip of the top acts as some analog of
aerodynamic cross-forces, and its torque as some analog of certain aerodynamic
torques. The analogy is imperfect because the laws of Coulomb friction are
not the same as those of the aerodynamic forces and torques (the friction
forece depends only upon the direction, rather than the magnitude, of the
velocity at which the tip of the top rubs against the table), The greater
complexity of the top's motion (in comparison with that of the shell) results
in the apparent lively and capricious behaviour of the top; but there can be _
no doubt that some of the dispersion of artillery fire is aldn to the wandering
of the top.

At the start the center of gravity of the top is substantially stationary,
while the tip rapidly swings out, sliding, substantially in a circle. The
frictional force is substantially perpendicular to the plane of yaw, and acts
as a positive Synge force S (or as a positive Magnus force F); it produces
some analogs of H (or a positive T) - and also a slight spin-accelerating
torque. As a result, the nutation damps out (rather abruptly), and presently
only the pure precession remains. This precession may (because of H and
positive T) grow for a while; but the damping is presently taken over by other
processes, Being (in the slow precession) rather steady in its direction, the
frictional force now causes some horizontal velocity of the c.g. across the
plane of yaw: this tends to neutralize the rubbing velocity perpendicular
to the plane of yaw, so that the tip tends to start rolling, rather than sliding,
on the surface of the table, However, as the plane of yaw continues precessing,
the rubbing velocity develops a component in the plane of yaw (the top starts,
literally, to "draw® on the surface). The frictional force thus develops a
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component analogous to the lift L, which (as it will be presently shown) tends
to damp the precession (there being no longer a nutation to grow). .Ii seems
to be an experimental fact (undoubtedly provable by analysis) that thd effect
of L overcomes that of H and T. This "dragging®™ neutralizes the velocity of
the c.g., and finally the vector w comes within the radius of the tip; B (or T)
become negative, and the top rather suddenly “goes to sleept,

Particularly interesting is the kind of the top which turns upside dowm.
Such a top starts as statically stable: wviz,., the radius of its tip 1s large,
and the metacenter® of the top is above the center of gravity (rather than at
the tip), For the same reason the rubbing velocity due to spin iz generally
greater than the rubbing velocity due to yawing; the friction is analogous,
therefore, to a negative Magnus torque. Now it is the precession which damps
out rapidly, while the nutation builds up to n/2 and beyond. While the vector
of angular velocity remains substantially vertical, it turns with reapect to
the tops for an ingtant the top is in the pure cartwheeling motion, without
any axial spin. Thereafter the motion can be congidered as the nutation of
a statically-unstible top, with a positive Magnus tarque = which presently
commences damping, This is as though a fin-stabillized shell turned around
and flew fins forward; in fact, the early stages of this motion are not unlike
the motion of a mortar shell landing "short®.

OTHER CROSS-TORQUES

The cross-torques M, H and T pretty well complete the cross-torque part
of Kelley-McShane matrix (7); symmetry demands only that we mention the Magnus-
crosa=torque IT. This is one of the marginally relevant components, given
rather an undue prominence by the Maple-Synge symmetry arguments; it now seems,
for instance, that various non-linear components™ of T are more important than
XT (it should be noted, however, that XT has not been measured at really large
yaws). On our sketches XT pulls L across the quasi-nutation; thus, in the
general epicycle its damping effects rather cancel, and in circular yawing
motions it is rather difficult (through not :meossibIa“"')to distinguish its
effect from that of M, since it affects only the angular rates. This is in
agreement with the ‘theory of BRL LlL6, which shows that XT produces only a
negligible effect on the angular rates, LT

We might remark on the apparent (through so far not established) checker-
board andi hierarchical character of this matrix, The linear M can be generalized
into a function of both yaw and spin, odd in yaw and even in spin; all terms
of such an expansion of M seem to affect only the angular rates, and leave
damping unaffected, The torque T, odd in both yaw and spin (and perpendicular,
by Maple-Synge theory, to M), appears as a sort of refinement on M3 all its.

¥ Which 13 a point on the axis of the top (or fixed with respect to a ship)
thru which the reaction of the table (or of water) acts, for small angles
of yaw. oo .

##  COf BRLM-682, "Spiral Yawing Motions of 81 mm Shell M56: a Study in Non-
linear Theory® (1953).

w Cf ERL 882. -
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terms seem not to affect angular rates, but are very easential im damping.

Now, the angular velocity'r) in itself is a sort of refinement on yaw 5; thus,

H can be accounted for® by the variation of the instanmtaneous angle of attack
along the axis of a yawing shell., Thus H, analogously to T, seems a refinement
on M; it can be an even function of spin, does not affect the angular rates,-

and affects damping. Then XT appears a refinement on both H and T: it stands

in the same relation to Has T to M, and to T as B to M; it is odd both in "

and spin, affects angular rates and does not affect damping. This is as though
the linear theory elevated XT on the principle of primogeniturs, and disinherited-
its more important cousins, e.g., non-linearities of T,

CROSS-FORCES

The cross-forces = viz., the aerodynamic forces N, $, F and XF of matrix
(7), as well as the component of gravity normal to the trajectory = affect the
yawing motion by producing a swerve, i.e., by moving point Tl’ or by shifting

the base of the Wvector® of quasi-precession, rather than that of the quasi-
mutation. 7This is considerably different from the effect of the crosa~torques,
and our “qualitative reasoning®, accordingly, will have to be’considerably
modified, Alss, it will not be satisfying as it was with the cross-torques.

The difficulty is quite real: we are dealing with a more complicated phenomenon
than a mere angular motion, viz., with the effect of swerve upon the yawing
motion. Mathematically, this is the step of coupling together two separate
differential equations - a step laborious even in the linear theory. Indicative
of this distinction is the obvious ®"cumulative™ character of the effect of
motion of Tl upon the motion of Lz the velocity of 'rl must have existed for

some length of time, and in a substantially the same direction, before its’

effect is felt; or, the position of Tl in the configuration of the triangle

1.‘1 L4, reflects not the instantaneous velocity of Tl’ but thet velocity which

had existed some time previously.

Lift. In advanced exterior-ballistics texts (e.g., BRL l46) the forces
in the plane of yaw are resolved usually into the normel force B (perpendicular
to the axis of the shell) and axial drag DA. It seems more natural to resolve
them into lift L (perpendicular to the trajectory) and drag D (opposed to T. ) ;

in our case this is also more convenieut.

On all our sketches lift pulls Tl upe To the first appr-oxima‘bion - if we

can disregard the effect of M on the damping of the yawing:motion - it is
obvious that quasi-precession is shrunk by the 1ift (those rare occasions when
L on our sketches is below Tl represent minima of.yaw, when lift is small).

The effect of lift on the quasi-nutation is less+gbwious, and in fact is less
important, To the first approximation we could simply say that a motion of Tl

has no effect upon L and A,, i.e., has no effect on the quasi-nutation. Indeed,
that would not be very far“from the truth.

* Cf ERL 668; also, recent ERL monograph, “Exact Re-atatement. of the Eguations

of Motion of a ShellW,
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On a closer inspection we observe that the motion of‘Tl does affect L

by changing the yaw, and therefore changing the torque M. Specifically, we
may distinguish two effects of the motion of Tl :

The first one is as follows, In its continuous rumning toward Al, the
point Tl fails, so to say, to “"lead“ Al. The plane of yaw, therefore, turms

more rapidly, and so does the arrow of M on our sketches, - Ingpecting our
sketches (either one, or every one, according to the reader's patience) we
observe that the faster turning of M tends to pull L away from Al’ we conclude

that 1lift tends to stretch the quasi-nutatlon.

' We are stepping now close to a pitfall., For instance, the linear theory
shows that precession and nutation (under the assumptions which we have so
far accepted, viz., a constant velocity and spin of the shell) have constant
proportions @/6; but precession is damped by 1ift, while nutation is built
up. Hence the quasl-precession in nutation is stretched, and quasi-nutation
in precession is shrunk - in apparent contradiction to our preliminary obser-
vations, The answer lies, again, in the neglect of the effect of M, and in -
the unwarranted assumption that a motion representing a certain proportion
of precession and nutation without the 1ift will retain this proportion after
the 1lift is introduced. It is easy to confuse two different problems: one
(ours), how does the 1ift affect a motion with given initial conditions; and
the other (practically habitual in the milieu of mathematical approach), how
does a possible spiral motion in the presence of 1ift differ from a possible
spiral motion without 1ift.

We have an inkling of this in considering the second effect: as M turns,
it also (on the whole) tends to diminish in magnitude, because of the gsner-
ally diminishing ydw. The angular rate of quasi-precession, we might judge,
is not affected much, for the magnitude of the quasi-precession also diminishes.
But, since the velocity of Al is independent of the position of Tl, the angular
rate of Al aboyt Tl is, on the whole, increased; i.e., the synchronism of L
and Al’ or the spiral character of the motion, will not be generally preserved -

unless the phase relations of the triangle T LAl are such that the magnitude

of quasi-nutation is changing in some particular manner. In this way we come
to consider the spiral motions again., Two possible configurations are shown
on Fig, 13, which explains the physical mechanism of the well-known result of
the linear theory. Thus, in precession (Fig. 13b) the quasi-precession is
ghrunk not only by the lift, but also by the M-torque; the quasi-nutation is
simltaneously strongly shrunk by the M-torque. In nutation (Fig. 13a) the
M-torque stretches the quasi-precession more strongly that it is shrunk by
the 11ft; and simultaneously, the M-torque slightly stretches the quasi-
nutation.

Our qualitative conclusion {completely free from the assumptions of

" linearity) is, therefore, as follows, The quasi-precession is damped by 1ift
strongly if it is an essential component of yaw, grows slightly if it is an
unimportant component. The quasi-nutation grows slightly if it is the princi-
pal component of yaw, shrinks strongly if it is an unimportant component.,
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The effect of 1lift should be Juxtaposed with that of H-torque. In fact,
these two refinements on an undamped epicycelic motion form a wouldw-be satis-
factory system for damping of yawing motion in the absence of Magmus effects:-
One damps nutation, the other = precession. This fact has been brought out
particularly clearly by Davis and Follin®, to whose work I take pleasure to
acknowledge my indebtedness once again, The student of ballistics should be :
reminded at this point that the Magnus effects had to be introduced, historicai-
1y, precisely because that system failed to account satisfactorily for the
totality of experimental information,

Let us now revert to the quantitative evaluation of the effect of 1ift
in the linear cage. Instead of considering the angles, as we did in (8) and
(9), we should now consider (cf. Fig. 13) the wroportional radial rates, i.e.,
the rates of growth divided by the magnitudes. To preserve similarity,

(yn=- L/m)/6 = (B/L « L /m)/(5 - @) (20)

_ Substituting L = f6, M = 45, L = Aoy, M= (Aw /B)F, and B = v@#/(5 - §)
and solving for 7y, we have

¥ = - Wm) (3@ - g/8)/ [ - /60 - B/ ] aon)

Substituting, from (3®) and (3B), B;L/Azcn?_ = (1 - 6°)/ and requiring that

the ratio §/6 remain constant as in (3A), we have the simple result, somewhat
analogous to (84): :

v« 2 (f/m) (BAay)/o (100)

In the presence of swerve we no longer can compute the proportional radial
rates (with respect to time) asny/6 - which we did in (8B); nor can we say ~
in analogy to (8&) - that the two spirals are mirror images of each other;
rather, these rates are given by the left-hand side of (10). Substituting
into (10) £ = K pd?u2, and reverting to the notation of BRL Lké, we have the

proportional radial rates with respact to travel as
- (3/2)Q1 7 1/a), (10C)
in sgreement with the linear theory.

There 1s some resemblance between (10C) and (8C), but it should not
distract our attention from the fact that the mechanisms of the spirals of
(10C) and (8C) are essentially different, The spirals of (8C) were yawing
motions about a straight-line trajectory, those of (10C) represent an effect
of swerve. Similarly, some further refinements on (10) are possible, but do
not seem especially profitable,

3
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Magnus Force, While the appreciation of the Magnus effecis arose
orlglna%'f from the knowledge of the &xistence of the Magnus :force F (cf.

the swerve of a spinning ball, Magnus's wind-tunnel experiments with spinning
eylinders in cross-flow, Flettner's rotor, etc.), with a shell the most im-
portant effect of Magnus force F is that it produces the Magnus torgue T -
whose effects have already been discussed. Magnus force proper does produce
some legitimate swerve*, (and in a spinning top, the frictlon at the tip
produces some wandering of the top); but its direct effect on the yawing motion

se is, fortunately, negligible., 4 positive F on all our sketches pulls
'1‘1 to the left; therefore, it affects mostly the angular rates (slightly

increasing them), rather than the damping rates - and its effect is difficult
to distinguish from that of a change in M,

?% Force, The force S which produces the damping torque H has been
introduced into ballistics for ithe sake of a certain formzl mathematical
consistency. This force is closely analogous to Magnus farce., On all our
sketches this force pulls Tl across the direction of the Mvector® of quasi-

:nut.at.ion. Thus in the general epicyclic motion its effects rather cancel out
(even more so than was the case with F), and in the spiral motions it affects
only the angular rates (rather than the damping rates); it does have some
effect on the swerve, but in the study of sma.ll yawing motion it can be dis-
regarded.

OQur gualitative conclusions about the unimportance of F and S are in
agreement with the results of the linear theory.

Cross-Magnus Force, The force XF which produces the Magms cross-torque
-XT needs mentioning only for the sake of completing the linear matrix (7); it
survives in the linearization of the Maple-Synge theory only for the reason
that Synge's aerodynamic hypothesis treats the yawing velocity 7] @s being on
par with the yaw 6 (rather than as a refinement on 5, as we hold), In the
results of the linear theory of yawing motion the effect of this forece is
apparently negligible. Yet we may swmise that the cross-fores part of the
matrix (7) may possess the same checker-board cheracter which we have detected
in the cross-torque part of that matrix; then XF should affect damping, On

our sketches XF pulls Tl along the direction of quasi-nutation; so ﬂ:mt, indeed,

1% affects damping in the basic, spiral, motions. It is a simple matter to
investigate the effect of XF on spiral motions quanitatively, with the assump-
tions of linearity - apalogously to (10), ' The result is that the radial pro- .
portional rates of growth with respect to the distance in calibers are

pd JxFJM/kga ‘  (10)

* Cfes; €oes BRL 703, "On Jump Due to anz—lé Disturbances*; also BRLM 682,

*¥ An evaluation of the effect of F on the angular rates cc;uld readily be made,

but does not appear profitable: for, with the assumptions usually mede in
the linear theory, it turns out that this effect is negligible, -
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This is in agreement with what the result of linear theory would have been
if terms of second order in J's had been kept. Thus, IF does not matter in
yawing motion simply because its effects are small, We may note that our
surmise about the checker-board character of (7) is confirmed, but is over-
whelmed Ly the hierarchical character of that matrix, If the reader will
tolerate another figure of speech, the primogeniture claims of XF, filed with
the Maple-Synge theory, are rejected even by the Kelley-McShane theory which
is descended from Nielsen-Maple-Syrnge concepts.

The checker-board character of (7) can be summed up by writing
M(a) Pd) = N@) Fa)
and
H{d) XT{(a) s8(a) Xxr(4),
where (a) and {d) stands for Waffects angular rates® and %affects deamping

rates®, The hierarchical character of (7) can be summed up by ranking its
components in the order of their importance:

1lst rank M (a) determines the basic character of motion
2nd % H, T, N (d) determine damping

3rd ® XT, F, 8 (a) refinement on angular rates

hth = IF (d) refinement on damping rates.

The usefulness of this trivial classification lies in the fact that it
shows up certain weaknesses of Nielsen-Synge-Kelley-McShane linearization of
Maple-Synge theory, and helps to organize the methods of further attack: +thus,
if we study the damping rates, no direct effect of XT, F and S can be expected,
while refinements on H, T and N are just as legitimate = and may be more
important = than the measurement of the ®*first-order® term IF.

YAW OF REPOSE

The effect of the force of gravity acting across the trajectary, which
causes the curvature (as distinguished from the swerve) of the trajectory, is
considerably different from that of the aerodynamic cross-forces - for the
simple reason that this force is relatively constant and independent of yaw
and yawing velocity. Mathematically this force manifests itself an inhomo-
geneity of the differenmtial equation (rather by a change in the coefficients
of the equation) and results in the fact that the general (linear) solution
consisting of precession and nutation must be augmented by the third component,
called yaw of repose.

We may arrive at the same conclusion by an argument analogous to that by
which we have introduced the generalized (non-linear) precession and mtation.
The point T, ®falls®, in the surface of our sphere, (¢f. Fig. 1) at the

velocity gros®/u (where g is the acceleration of the gravity and ¢ is the angle
of inclination of the trajectary). If the shell is to trail properly, the .
vectorial velocity of 31 on this sphere mst be approximately the same. Drop-

ping the convention of drawing 4, above T,, we observe that L must be directly
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to the left of A’l’ i.e,, there muat exist a horizontal quasi-nutation, i:ointing
(from L to Al) to the right. Moreover, the point L of this sphere must have

substanﬁidlly the same vectorial velocity, i.e,, there must exist suitable
torques; we assume these to consist largely of the M=torque. Then there must
exist a yaw (from T, to Al) pointing directly to the right. Thus 1., L and

Al are co-planar and on our sketches the situation appears as a circular yaw,
except that the motion of Tl causes the triplet of these points to move down
without any rotation noticeable in our sketches,

The condition of the ®ateadiness® of thiz motion is

gcosd /u = M(6)/L = 1sing (12)
vhich, on assumptions of linearity, becomes simply

geost/u = ub/hays [y /B, (221)
and from whith thers follow the simple results

@/6 = 1/is . (12%)
and | ; | ‘ |

5 = (hmy/u)(gcost/u) . (124)

The expression (12A) for the yaw of repose may be rewritten in & number
of ways. For instance, in the notation similar to that of ERL 446 and ERL 668,
we would introduce the dimens:.onless quantities v = tnld/u = spin per caliber

of travel, and J, = gdcosﬁ/u then (12A) becomes
kavJec/JH, (12¢)

in agreement with the skeletonized form for the yaw of repose in the 11.naar
theory. )

The yaw of repose is considered, naturally, a basic form of yawing motion,
analogous to the precession and the nutation of (3B). Its superposability with
the nutation and the precession is, of course, distinctly a festure of the
linsar theory. In attempting to combine the yaw of repose with the epicycle
in the general non-linear theory we wouid meet, unfortunately, the difficulties
analogous to those we met in attempting to pass from the linear to non-linear
epicycle., A study of the non-linearities of the yaw of repose exlsting alone
(analogous to our review of the theory of the spinning top) does not eppear
profitable.

It is a simple matter, however, to generalize (12), within the assumptions
of linear theory, by perturbing it for the effect of other forces and torgues.
At this stage we may readily make the perturbations for the cross~torgues and
cross-forces: these would be very similar to those of (8), (9), (20) and (1),

-



except that the conditions of splrality would be replaced by the conditlons
of a parallel synchronous motion, e.g., (3B) replaced by (12%). dJust to
indicate the simplicity of such processes, we might mike the perturbation of
(12') for the H-torque. From Fig. 1L it is obvious that we must have

wéy = hm (13)
from which, using (12%},

T = h/Aay , (132)
and the downward component of the yaw of repose can bé shown to be

& = Iy cJH/JH, (13¢)
in agreement with the linear theory.

Additional perturbations on the yaw of repose (including the perturbations
for the axial forces and torques, which we have not made as yet for precession
and mutation) we shall leave as an exercise for the reader: and ws need hardly
mention that our method can reproduce all the results of the linear theory.

We might only remark that in any respectable trajectory the yaw of repose is
extremely small, and is, therefore, in itself only a minor refinement on the
epicycle. Experience shows, in some cases, that an apparently large summital
yaw 13 very likely due to a survival of the epleyclic yaw, i.e., insufficient
damping, We might also mention that Jéc’ unlike the aerodynamic J's, is pro=-

portional to the caliber - so that the. yaw of repose must be scaled from one
caliber to another by other rules than those of the epicycle®, ‘

FORCES ALONG THE TRAJECTORY

Let us now consider the effects of drag (D) and of the component of
gravity (mgsirP) acting in the direction opposite to the trajectory vector
31. Their effects differ considerably from those of the cross-forces
(just as the "WKB® perturbation of ERL Lh6 differs from the inclusion of the
complex components into the coefficients of a differential equation). They
affect the yawing motion by changing the veloclty of the shell, and hence
chenging the overturning moment M and the stability factor s. Im precession
and nutation = c¢f. {3B) and (4B) = the proportions of the spherical triangle
T,LA; are no longer constant, even in the linear theory.

Let us start these considerations first in the most general (and that
necessarily means vague) way, particularizing them presently by resorting
to the spiral motions, and finally, to the assumptions of linearity. Let
us start at the instant of minimum yaw (either W or E sketch)., We note that
throughout the regimes of increasing yaw (NW, N and NE sketches) the motion
of the point L, caused by M, contributes to the increase of yaw - specifically,

* Cf. BRIM No, 833, "Trajectory Models in Mortar Fire".



by tending to stretch both the quasi-precession and the quasi-nutation. " Hence
the decrease of M, caused by the loss of velocity, decreases the growth of yaw.

In the regimes of the decreasing yaw (SE, S and SW sketches) the motion
of L tends to shrink both the quasi-precession andi the quasi-nutation. This
fact, taken alone, does not give us the information as the total effect on
yaw: both the quasi-precession and the quasi-nutation are decreased by the
loss of velocity of the shell; but the minimum yaw is the difference between
the two. We can observe then that in these regimes the motion of L impedes
the shrinkage of yaw. Hence the decrease of the speed of L - by decreasing
the impeding of the shrinkage of yaw = increases the shrinkage. .

We conclude tentatively that the loss of velocity alwajs damps the yaw
of a spin-stabilized projectile,

We may note that thie damping is associated with an increase of the
stability factor; and it is interasting that our intuitive sense of the ex~
istence of a relation between the stability and the amplitude {or damping)
of the yaw is, in a way, confirmed.* . We may also note that at this stage
we are .not able as yet to make a definite statement about the shrinkage of
the quasi-precegsion and the quasi-nutation; this ecorresponds to.the fact
that we made no committment about the shape of the epicycle, viz., about the
proportions of the precession and nutation {or quasi-precession and quasi-
mitation) in this epicycle. It may be seen; for instance, from (3B) that
different behavior of the quasi-precession and quasi-nutation may be expected,
depending upon whether the nutation or the precession predominates.

We arrive at the consideration of spiral motlons by a process samewhat
similar to that we used in discussing the effects of 1ift, The angular welocity
{1 of quasi-nutation about the instantaneous position of point L remains con-
stant, but the linear velocity of point L in our sphere decreases: thus a
possible synchronism of the quasi-precession with the pleme of yaw tends to
be disrupted. Yet this synchronism may be. preserved, approximately, if the
magnitode of the quasi-precession deereases, tdo. Thlis can be done by the
torque M if L lags the plane of yaw; the situstion must be then described by
a 8E sketch, and the quasi-nutation must shrink, too. But the spiral motions
must now be considered in copjunction with the fact that the ratio @/6 from
(38) or (4B) is no longer a comstant; i.e., the quasi-rmtation and guasi=--
precession are decreasing at different proportionzl rates, the angles B and
Y in the triangle T,LA, are changing, and the’' synchronism of' the quasi» ..

precession with the plane of yaw can no longer be exact. -Speci.ffcally, in
rutation (Fig. 15a) the quasi-precession will shrink more rapidly, and the

* With fin-stabilized projectiles the loss of velocif.y pbuilds up the yaw -

but there the loss of velocity makes the shell more sluggish in its yawing
motion, or = in owr intuitive sense - less stable.
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ratio @/6 will increase, as it should by (3B); the angle.f will increase -
and in the limlt, when stability factor becomes infinite, o approaches 1, the
motion becomes the vacuum nutation, and points L nnd Tl merge, - opases to

have meaning. Analogously, in precession (Fig, 15b) it is the guasi-nutation
which shrinks more rapidly, the ratio @/6 decreases, and so does the angle P
(and in the 1imit it is ¥ which ceases %o .have meaning).

- Passing to the quantitative evaluation of the rates of shrinkage on the

- agsumptions of linearity, we must now drop our pretence of avgdding calculusﬂ
we are now concerned with the rates {i.e., derivatives) more intimately, and

we dre parallelling a more advanced mathematical process (the WKB perturbation’
for the non-constancy of the coefficients of the differential equations) than
before.s 8Still, we shall need not the theory of the differentisl equations,
but only the most elementary operations of the differentiel cdleulus, If we
let A be the guasi-precession (6 - @), we can re-write (BB) as

Asn(6-8)/s=1-p6=1Ta)2 (30)

From Fig. 15 we observe that the rat.e of change of A 1s Aw - B(ML),
and the rate of change of & is & = - v¢ 3 it Mill be an easy matter to relate
the change:.of velocity to the rate of nge & of 0. To relste these rates
(A, & and &) we need only to differentiate (3C)t ‘

A /- AYE =35 (1)
which; we might note, we do_not consider as a differential equation., Subpti-

tuting the expressions for A and 8, and further subsm;uting f =¥/ and
M= (Aml/B)ﬂ! a3 before, we have the equation for y, from which

t =t o/2(fu/Adn - b Pa/sd), N ¢

Bubstitu‘l;ms into (14') the values of §/6 and A /6 from (3B) and (3¢), and
simplifying as before, we have

Y- c/2o(Aml/2B) 1: o (1h4) -
Obvicmsly, the’ proportional rates of change (5/6)
- af20 | o - {14B)

for both precession and nutation; and lit.t.le algebra naad be done 1o show
that the radial rates with respect to travel are

+ (JD +Jp)(1 - 1/02)/2 (1kc)

(uhere I = gds:.nB/u )s in agreement with 4 the linear theory,

of course, the mechanism of ﬂ:e resultant 1ogarit!mic gpirals is again
different from that of the spirals of (8C) and 10C), Tt is indeed a tribute
to the plegance of the mathematical linear theory that three such distinct
physical processes result in the same simple (exponential) type of mpolution.
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It may be remarked that the subscript D in (14C) refers to the full drag
(rather than the axial drag DA}, i.e., includes the yaw-drag; while in the
gtandard texts on linear theory J‘D is really meant as JDA' A more thprough

(up to a point) study of the theory indicates, indeed, that it is more nearly
correct to use JD (in our sense) than JDA ~ as the student will, no doubt,

have occasion tc find out.
| AXIAL TORQUE

It now remains only to inspect the effect of the torque (ff) acting along
the axis of the projectile. In the linear thecry it is the spin-decelerating

torque, = KAde uav, and its effect is rather completely overshadowed by the

increase of gtability due to the loss of velocity. This torque can be readily
gene:;a.lized, ‘by the Maple-Synge theory, to include terms analogous to yaw-drag,
etc. N .

Hera, at last, is one torque that truly maps on our skstches as a point -
viz,, the point Al. It was mentioned, however, that in our method torques

must be decomposed along and .across L. In the foregoing discussion of the
cross-torques - generally, following the assumptions of limearity - we had
neglected this subtle distinetion, treating torques normal to &l as though

they were pnormal to L: 1.e., we had in effect assumed cosf = 1, or our error

wag of the second order in #. The component ofuqalong L is approximately
same as f) , but its component across L is approximately A #, viz., of the
first order in § (Fig. 16). The first component, insofar as our sketches are
concerned, acts analogously to a negative drag, i.e., by changing ¢ (except
that the change of o due to change of o mst be distinguished from the change

of ¢ due to change of u)'“'_'; the second component is readily seen %o be analogous
to the H torque (except for the sign and a constant factor). Combining the
effects of these two components, it can be readily shown that the proportionsl
radial rates with respect to travel ars. '

(1,/282)(% /o + 1/0°), (50
in agreement with the linear theary.,
) Again, certain refinements by the recission of the assumptions of linearity

are possible, if not profitable. In particular, it will be readily seen that
thare are some effects due to the components of cross-torques along L.

*  ¢f, also BRL 668 and ERL 882.
o Not to be confused with the fact that the arrow of 4 on Fig. 16 is- in the

direction of positive axial drag.
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CONCLUSION
We have thus accomplished the following:

. 1, &stablished an interpretation, and a visualization, of the well-
known results of the mathematical linear theory of yawing motion. This vis-
uvalization is not limited to the linear theory, and may be used as a starting
point for the more advanced problems of ballisties,

. 2. BHeproduced all results of the l{near theory without resorting
to caleculus (saving that excellent tool for the more warthwhile problems of
ballistics).

3. Reviewed the theory of yawing motion in the light of the latest
experimental information (cf., e.g., the importance of the non-linearities
of T in -comparison with XF),

L. Outlined (crudely) effects of some of the mon-linearities of
ballistics.

5. Drawn attention to a certain inherent weakness of the present-
day mathematical approach, viz., the sharp split between the simple linear,
and generglly=-unsolved non=}inear, cases, It is hoped that some day someone
will introduce some radical solution of this difficulty; it might take the
form, for instance, of a special-purpose analog differential analyzer that
has, so to say, the spherical trigonometry built into it,

The justice of the probable criticisms, that (a) we could not have done
this wark bad the mathematical approach not blazed the trail, and (b) it would
be simpler to learn calculus, - is so obvious that it requires no comment.

Incidentally, our approach does seem to have blaged the trall in two more
advanced problems: the effect of asymmetry of the shell, (as mentioned on
page 13 of ERLIM 685) and the effect of the liquidity of the filler, However,
both of those problems are outside the scope of this paper,
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REMARKS -ON NOTATIONS

Effort was made to adhere to familiar notation, even at the cost of
same minor inconsistencies.

Underlined letters stand for thres-dimensional vectors. Otherwise
letters are used for: scalar quantities (e.g., magnitude of the vector);
to desipgnate a point on the sketeh; and on & few occasions, explained in the
context, for complex quantities.

Subscript 1 is used t designate a vector of unit magnituﬂe, an exception
is the axial spin @), where this subscript is used (after ERL h}46) for the

axial component of the angular velocity w; the cross-component is considered
either as the vector ™|, or as the mealaxr'7) , but is visualdzed as an arrow
on the sketch, viz,, essentially as the complex quantity ¢ of BRL LLb.

While the dot over a letter indicates, as usuval, the derivative of a
quantity with respect to time, these derivativas (spoken of as “rates") are
introduced each time as separate symbols.

Subscripts n and p refer to mtation and precession.

Congistent units are assumed throughout. All angles are in radians
(though often units of angles do not matter),

m = mass of shell; d = caliber; u = velocity; g = gravity; £ =« angle
of inclination of trajectory, reckoned-positive upward; p= density of the air;
A and B are axial and transverse moments of inertia, and k and k are t.he

corresponding radil of gyration in calibers; v = spin in radians per caliber
of travel; s = stability factor, as defined by (3%),

‘/ 1 - 1/s, the very convenient end familiar (though still nameless)
parameter of exterior ballistics, particularly in the linear theary; its
physical significance is clear frém (3B).

= direction of trajectory (velocity of the c.g. of shan), Al =

d:lrection of shell's axis; L = angular momestum of the shell; G = total torgue
acting ipon the shell, LetTer 0 on some skstches denotes sheﬂ's ceater of
gravi‘b?.

5 = yaw (angle from T; to 4,); ﬁ - qmi—nutation (a.ngle from L to %

also denoted by QN); A = quasi-precession (angle from T, to L; also denoted

by QP); YV = angular velocity of quasi-nutation with respect to the instantan-
eous position of L, cf. (2); £(6,§) « the trigonometric function defined by
(4) and relevant For instantaneously circular yawing motion: cf, Fig 6; v -
and P are auxiliary angles, as denoted on the sketches,
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M = overturning moment; H = damping moment; T = Magnhus moment; XT =
cross-Magnus moment; N = Normal force; F » Magnus force; & = Synge force;
IF = cross-Magnus force; D = drag; DA = axial drag., Italics ./ and £ are
used to distinguish the axial torque and lift from the moment of inertia
and angular momentum; but little confusion would arise if A and L are used,
as 18 customary. After Synge, the words “™moment®™ and "torque® are used
mterchangeably, as are l'angular velocity™ a.nd “gpin®. K's are defined in

ERL LL6; similarly, J = Kpd /m, = gds:.na/u. and J, , = gdcosﬂ/uz. As is
customary, coefficient u is assoclated with M; to comﬁlete the symmetry

(and in minor variance from Fowler and BERL 664), h is analogously assoeiated
withH, t with T, and [ with L.

. Points of compasa (N, NE, E, SE, S, SW, W, NW) are used to indicate
the direction of the yawing motion, as viewed on Fig. 4, qualitatively.
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